DOI QR코드

DOI QR Code

Single-Cell Sequencing in Cancer: Recent Applications to Immunogenomics and Multi-omics Tools

  • Sierant, Michael C. (Department of Genetics, Yale University School of Medicine) ;
  • Choi, Jungmin (Department of Genetics, Yale University School of Medicine)
  • Received : 2018.12.13
  • Accepted : 2018.12.21
  • Published : 2018.12.31

Abstract

Tumor heterogeneity, the cellular mosaic of multiple lineages arising from the process of clonal evolution, has continued to thwart multi-omics analyses using traditional bulk sequencing methods. The application of single-cell sequencing, in concert with existing genomics methods, has enabled high-resolution interrogation of the genome, transcriptome, epigenome, and proteome. Applied to cancers, these single-cell multi-omics methods bypass previous limitations on data resolution and have enabled a more nuanced understanding of the evolutionary dynamics of tumor progression, immune evasion, metastasis, and treatment resistance. This review details the growing number of novel single-cell multi-omics methods applied to tumors and further discusses recent discoveries emerging from these approaches, especially in regard to immunotherapy.

Keywords

References

  1. Bhang HE, Ruddy DA, Krishnamurthy Radhakrishna V, Caushi JX, Zhao R, Hims MM, et al. Studying clonal dynamics in response to cancer therapy using high-complexity barcoding. Nat Med 2015;21:440-448. https://doi.org/10.1038/nm.3841
  2. Russo M, Siravegna G, Blaszkowsky LS, Corti G, Crisafulli G, Ahronian LG, et al. Tumor heterogeneity and lesion-specific response to targeted therapy in colorectal cancer. Cancer Discov 2016;6:147-153. https://doi.org/10.1158/2159-8290.CD-15-1283
  3. Tang F, Barbacioru C, Wang Y, Nordman E, Lee C, Xu N, et al. mRNA-Seq whole-transcriptome analysis of a single cell. Nat Methods 2009;6:377-382. https://doi.org/10.1038/nmeth.1315
  4. Navin N, Kendall J, Troge J, Andrews P, Rodgers L, McIndoo J, et al. Tumour evolution inferred by single-cell sequencing. Nature 2011;472:90-94. https://doi.org/10.1038/nature09807
  5. Puram SV, Tirosh I, Parikh AS, Patel AP, Yizhak K, Gillespie S, et al. Single-cell transcriptomic analysis of primary and metastatic tumor ecosystems in head and neck cancer. Cell 2017;171:1611-1624.e24. https://doi.org/10.1016/j.cell.2017.10.044
  6. Tirosh I, Izar B, Prakadan SM, Wadsworth MH 2nd, Treacy D, Trombetta JJ, et al. Dissecting the multicellular ecosystem of metastatic melanoma by single-cell RNA-seq. Science 2016;352:189-196. https://doi.org/10.1126/science.aad0501
  7. Venteicher AS, Tirosh I, Hebert C, Yizhak K, Neftel C, Filbin MG, et al. Decoupling genetics, lineages, and microenvironment in IDH-mutant gliomas by single-cell RNA-seq. Science 2017;355:eaai8478. https://doi.org/10.1126/science.aai8478
  8. Dalerba P, Kalisky T, Sahoo D, Rajendran PS, Rothenberg ME, Leyrat AA, et al. Single-cell dissection of transcriptional heterogeneity in human colon tumors. Nat Biotechnol 2011;29:1120-1127. https://doi.org/10.1038/nbt.2038
  9. Patel AP, Tirosh I, Trombetta JJ, Shalek AK, Gillespie SM, Wakimoto H, et al. Single-cell RNA-seq highlights intratumoral heterogeneity in primary glioblastoma. Science 2014;344:1396-1401. https://doi.org/10.1126/science.1254257
  10. Corces MR, Buenrostro JD, Wu B, Greenside PG, Chan SM, Koenig JL, et al. Lineage-specific and single-cell chromatin accessibility charts human hematopoiesis and leukemia evolution. Nat Genet 2016;48:1193-1203. https://doi.org/10.1038/ng.3646
  11. Hou Y, Song L, Zhu P, Zhang B, Tao Y, Xu X, et al. Single-cell exome sequencing and monoclonal evolution of a JAK2-negative myeloproliferative neoplasm. Cell 2012;148:873-885. https://doi.org/10.1016/j.cell.2012.02.028
  12. Azizi E, Carr AJ, Plitas G, Cornish AE, Konopacki C, Prabhakaran S, et al. Single-cell map of diverse immune phenotypes in the breast tumor microenvironment. Cell 2018;174:1293-1308.e36. https://doi.org/10.1016/j.cell.2018.05.060
  13. Miyamoto DT, Zheng Y, Wittner BS, Lee RJ, Zhu H, Broderick KT, et al. RNA-Seq of single prostate CTCs implicates noncanonical Wnt signaling in antiandrogen resistance. Science 2015;349:1351-1356. https://doi.org/10.1126/science.aab0917
  14. Sznol M, Powderly JD, Smith DC, Brahmer JR, Drake CG, McDermott DF, et al. Safety and antitumor activity of biweekly MDX-1106 (Anti-PD-1, BMS-936558/ONO-4538) in patients with advanced refractory malignancies. J Clin Oncol 2010;28(15 Suppl):2506. https://doi.org/10.1200/jco.2010.28.15_suppl.2506
  15. Hasin Y, Seldin M, Lusis A. Multi-omics approaches to disease. Genome Biol 2017;18:83. https://doi.org/10.1186/s13059-017-1215-1
  16. Chakraborty S, Hosen MI, Ahmed M, Shekhar HU. Onco-multi-OMICS approach: a new frontier in cancer research. Biomed Res Int 2018;2018:9836256.
  17. Bock C, Farlik M, Sheffield NC. Multi-omics of single cells: strategies and applications. Trends Biotechnol 2016;34:605-608. https://doi.org/10.1016/j.tibtech.2016.04.004
  18. Gao R, Davis A, McDonald TO, Sei E, Shi X, Wang Y, et al. Punctuated copy number evolution and clonal stasis in triple-negative breast cancer. Nat Genet 2016;48:1119-1130. https://doi.org/10.1038/ng.3641
  19. Kim C, Gao R, Sei E, Brandt R, Hartman J, Hatschek T, et al. Chemoresistance evolution in triple-negative breast cancer delineated by single-cell sequencing. Cell 2018;173:879-893.e13. https://doi.org/10.1016/j.cell.2018.03.041
  20. Bernard V, Semaan A, Huang J, San Lucas FA, Mulu FC, Stephens BM, et al. Single cell transcriptomics of pancreatic cancer precursors demonstrates epithelial and microenvironmental heterogeneity as an early event in neoplastic progression. Clin Cancer Res 2018 Nov 1 [Epub]. https://doi.org/10.1158/1078-0432.CCR-18-1955.
  21. Karaayvaz M, Cristea S, Gillespie SM, Patel AP, Mylvaganam R, Luo CC, et al. Unravelling subclonal heterogeneity and aggressive disease states in TNBC through single-cell RNA-seq. Nat Commun 2018;9:3588. https://doi.org/10.1038/s41467-018-06052-0
  22. Singer M, Wang C, Cong L, Marjanovic ND, Kowalczyk MS, Zhang H, et al. A distinct gene module for dysfunction uncoupled from activation in tumor-infiltrating T cells. Cell 2017;171:1221-1223. https://doi.org/10.1016/j.cell.2017.11.006
  23. Zheng C, Zheng L, Yoo JK, Guo H, Zhang Y, Guo X, et al. Landscape of infiltrating T cells in liver cancer revealed by single-cell sequencing. Cell 2017;169:1342-1356.e16. https://doi.org/10.1016/j.cell.2017.05.035
  24. Zong CC. Single-cell RNA-seq study determines the ontogeny of macrophages in glioblastomas. Genome Biol 2017;18:235. https://doi.org/10.1186/s13059-017-1375-z
  25. Sade-Feldman M, Yizhak K, Bjorgaard SL, Ray JP, de Boer CG, Jenkins RW, et al. Defining T cell states associated with response to checkpoint immunotherapy in melanoma. Cell 2018;175:998-1013.e20. https://doi.org/10.1016/j.cell.2018.10.038
  26. Jerby-Arnon L, Shah P, Cuoco MS, Rodman C, Su MJ, Melms JC, et al. A cancer cell program promotes T cell exclusion and resistance to checkpoint blockade. Cell 2018;175:984-997.e24. https://doi.org/10.1016/j.cell.2018.09.006
  27. Krieg C, Nowicka M, Guglietta S, Schindler S, Hartmann FJ, Weber LM, et al. High-dimensional single-cell analysis predicts response to anti-PD-1 immunotherapy. Nat Med 2018;24:144-153. https://doi.org/10.1038/nm.4466
  28. Hou Y, Guo H, Cao C, Li X, Hu B, Zhu P, et al. Single-cell triple omics sequencing reveals genetic, epigenetic, and transcriptomic heterogeneity in hepatocellular carcinomas. Cell Res 2016;26:304-319. https://doi.org/10.1038/cr.2016.23
  29. Macaulay IC, Haerty W, Kumar P, Li YI, Hu TX, Teng MJ, et al. G&T-seq: parallel sequencing of single-cell genomes and transcriptomes. Nat Methods 2015;12:519-522. https://doi.org/10.1038/nmeth.3370
  30. Dey SS, Kester L, Spanjaard B, Bienko M, van Oudenaarden A. Integrated genome and transcriptome sequencing of the same cell. Nat Biotechnol 2015;33:285-289. https://doi.org/10.1038/nbt.3129
  31. Hu Y, Huang K, An Q, Du G, Hu G, Xue J, et al. Simultaneous profiling of transcriptome and DNA methylome from a single cell. Genome Biol 2016;17:88. https://doi.org/10.1186/s13059-016-0950-z
  32. Angermueller C, Clark SJ, Lee HJ, Macaulay IC, Teng MJ, Hu TX, et al. Parallel single-cell sequencing links transcriptional and epigenetic heterogeneity. Nat Methods 2016;13:229-232. https://doi.org/10.1038/nmeth.3728
  33. Darmanis S, Gallant CJ, Marinescu VD, Niklasson M, Segerman A, Flamourakis G, et al. Simultaneous multiplexed measurement of RNA and proteins in single cells. Cell Rep 2016;14:380-389. https://doi.org/10.1016/j.celrep.2015.12.021
  34. Peterson VM, Zhang KX, Kumar N, Wong J, Li L, Wilson DC, et al. Multiplexed quantification of proteins and transcripts in single cells. Nat Biotechnol 2017;35:936-939. https://doi.org/10.1038/nbt.3973
  35. Stoeckius M, Hafemeister C, Stephenson W, Houck-Loomis B, Chattopadhyay PK, Swerdlow H, et al. Simultaneous epitope and transcriptome measurement in single cells. Nat Methods 2017;14:865-868. https://doi.org/10.1038/nmeth.4380
  36. Guo F, Li L, Li J, Wu X, Hu B, Zhu P, et al. Single-cell multi-omics sequencing of mouse early embryos and embryonic stem cells. Cell Res 2017;27:967-988. https://doi.org/10.1038/cr.2017.82
  37. Clark SJ, Argelaguet R, Kapourani CA, Stubbs TM, Lee HJ, Alda-Catalinas C, et al. scNMT-seq enables joint profiling of chromatin accessibility DNA methylation and transcription in single cells. Nat Commun 2018;9:781. https://doi.org/10.1038/s41467-018-03149-4
  38. Pott S. Simultaneous measurement of chromatin accessibility, DNA methylation, and nucleosome phasing in single cells. Elife 2017;6:e23203. https://doi.org/10.7554/eLife.23203
  39. Han KY, Kim KT, Joung JG, Son DS, Kim YJ, Jo A, et al. SIDR: simultaneous isolation and parallel sequencing of genomic DNA and total RNA from single cells. Genome Res 2018;28:75-87. https://doi.org/10.1101/gr.223263.117
  40. Ramani V, Deng X, Qiu R, Gunderson KL, Steemers FJ, Disteche CM, et al. Massively multiplex single-cell Hi-C. Nat Methods 2017;14:263-266. https://doi.org/10.1038/nmeth.4155
  41. Buenrostro JD, Wu B, Litzenburger UM, Ruff D, Gonzales ML, Snyder MP, et al. Single-cell chromatin accessibility reveals principles of regulatory variation. Nature 2015;523:486-490. https://doi.org/10.1038/nature14590
  42. Cao J, Cusanovich DA, Ramani V, Aghamirzaie D, Pliner HA, Hill AJ, et al. Joint profiling of chromatin accessibility and gene expression in thousands of single cells. Science 2018;361:1380-1385. https://doi.org/10.1126/science.aau0730
  43. Lavin Y, Kobayashi S, Leader A, Amir ED, Elefant N, Bigenwald C, et al. Innate immune landscape in early lung adenocarcinoma by paired single-cell analyses. Cell 2017;169:750-765.e17. https://doi.org/10.1016/j.cell.2017.04.014
  44. Gubin MM, Esaulova E, Ward JP, Malkova ON, Runci D, Wong P, et al. High-dimensional analysis delineates myeloid and lymphoid compartment remodeling during successful immune-checkpoint cancer therapy. Cell 2018;175:1443. https://doi.org/10.1016/j.cell.2018.11.003
  45. Chen M, Zhou X. VIPER: variability-preserving imputation for accurate gene expression recovery in single-cell RNA sequencing studies. Genome Biol 2018;19:196. https://doi.org/10.1186/s13059-018-1575-1
  46. Li WV, Li JJ. An accurate and robust imputation method scImpute for single-cell RNA-seq data. Nat Commun 2018;9:997. https://doi.org/10.1038/s41467-018-03405-7