References
- Picchioni MM, Murray RM. Schizophrenia. BMJ 2007;335:91-95.
- van Os J, Kapur S. Schizophrenia. Lancet 2009;374:635-645. https://doi.org/10.1016/S0140-6736(09)60995-8
- Owen MJ, Craddock N, O'Donovan MC. Schizophrenia: genes at last? Trends Genet 2005;21:518-525. https://doi.org/10.1016/j.tig.2005.06.011
- Karayiorgou M, Gogos JA. A turning point in schizophrenia genetics. Neuron 1997;19:967-979. https://doi.org/10.1016/S0896-6273(00)80390-6
- Doherty JL, O'Donovan MC, Owen MJ. Recent genomic advances in schizophrenia. Clin Genet 2012;81:103-109. https://doi.org/10.1111/j.1399-0004.2011.01773.x
- Kim LH, Park BL, Cheong HS, Namgoong S, Kim JO, Kim JH, et al. Genome-wide association study with the risk of schizophrenia in a Korean population. Am J Med Genet B Neuropsychiatr Genet 2016;171B:257-265.
- Chen XW, Feng YQ, Hao CJ, Guo XL, He X, Zhou ZY, et al. DTNBP1, a schizophrenia susceptibility gene, affects kinetics of transmitter release. J Cell Biol 2008;181:791-801. https://doi.org/10.1083/jcb.200711021
- Gamo NJ, Duque A, Paspalas CD, Kata A, Fine R, Boven L, et al. Role of disrupted in schizophrenia 1 (DISC1) in stress-induced prefrontal cognitive dysfunction. Transl Psychiatry 2013;3:e328. https://doi.org/10.1038/tp.2013.104
- Harrison PJ, Law AJ. Neuregulin 1 and schizophrenia: genetics, gene expression, and neurobiology. Biol Psychiatry 2006;60:132-140. https://doi.org/10.1016/j.biopsych.2005.11.002
- Iijima Y, Inada T, Ohtsuki T, Senoo H, Nakatani M, Arinami T. Association between chromogranin b gene polymorphisms and schizophrenia in the Japanese population. Biol Psychiatry 2004;56:10-17. https://doi.org/10.1016/j.biopsych.2004.03.012
- Wu S, Ma J, Xing Q, Xu Y, Meng J, Cao D, et al. Further evidence that the chromogranin B gene confers predisposition to schizophrenia: a family-based association study in Chinese. J Neural Transm (Vienna) 2007;114:641-644. https://doi.org/10.1007/s00702-006-0600-9
- Zhang B, Tan Z, Zhang C, Shi Y, Lin Z, Gu N, et al. Polymorphisms of chromogranin B gene associated with schizophrenia in Chinese Han population. Neurosci Lett 2002;323:229-233. https://doi.org/10.1016/S0304-3940(02)00145-3
- Shin JG, Kim JH, Park CS, Kim BJ, Kim JW, Choi IG, et al. Genderspecific associations between CHGB genetic variants and schizophrenia in a Korean population. Yonsei Med J 2017;58:619-625. https://doi.org/10.3349/ymj.2017.58.3.619
- Taupenot L, Harper KL, O'Connor DT. The chromogranin-secretogranin family. N Engl J Med 2003;348:1134-1149. https://doi.org/10.1056/NEJMra021405
- Arnold SE, Trojanowski JQ. Recent advances in defining the neuropathology of schizophrenia. Acta Neuropathol 1996;92:217-231. https://doi.org/10.1007/s004010050512
- Selemon LD, Goldman-Rakic PS. The reduced neuropil hypothesis: a circuit based model of schizophrenia. Biol Psychiatry 1999;45:17-25. https://doi.org/10.1016/S0006-3223(98)00281-9
- Weinberger DR. Cell biology of the hippocampal formation in schizophrenia. Biol Psychiatry 1999;45:395-402. https://doi.org/10.1016/S0006-3223(98)00331-X
- Davidsson P, Gottfries J, Bogdanovic N, Ekman R, Karlsson I, Gottfries CG, et al. The synaptic-vesicle-specific proteins rab3a and synaptophysin are reduced in thalamus and related cortical brain regions in schizophrenic brains. Schizophr Res 1999;40:23-29. https://doi.org/10.1016/S0920-9964(99)00037-7
- Eastwood SL, Burnet PW, Harrison PJ. Altered synaptophysin expression as a marker of synaptic pathology in schizophrenia. Neuroscience 1995;66:309-319. https://doi.org/10.1016/0306-4522(94)00586-T
- Nowakowski C, Kaufmann WA, Adlassnig C, Maier H, Salimi K, Jellinger KA, et al. Reduction of chromogranin B-like immunoreactivity in distinct subregions of the hippocampus from individuals with schizophrenia. Schizophr Res 2002;58:43-53. https://doi.org/10.1016/S0920-9964(01)00389-9
- Landen M, Grenfeldt B, Davidsson P, Stridsberg M, Regland B, Gottfries CG, et al. Reduction of chromogranin A and B but not C in the cerebrospinal fluid in subjects with schizophrenia. Eur Neuropsychopharmacol 1999;9:311-315.
- Krauzlis RJ. The control of voluntary eye movements: new perspectives. Neuroscientist 2005;11:124-137. https://doi.org/10.1177/1073858404271196
- Lencer R, Trillenberg P. Neurophysiology and neuroanatomy of smooth pursuit in humans. Brain Cogn 2008;68:219-228. https://doi.org/10.1016/j.bandc.2008.08.013
- Lencer R, Sprenger A, Reilly JL, McDowell JE, Rubin LH, Badner JA, et al. Pursuit eye movements as an intermediate phenotype across psychotic disorders: evidence from the B-SNIP study. Schizophr Res 2015;169:326-333. https://doi.org/10.1016/j.schres.2015.09.032
- Lencer R, Mills LJ, Alliey-Rodriguez N, Shafee R, Lee AM, Reilly JL, et al. Genome-wide association studies of smooth pursuit and antisaccade eye movements in psychotic disorders: findings from the BSNIP study. Transl Psychiatry 2017;7:e1249. https://doi.org/10.1038/tp.2017.210
- Huttner WB, Gerdes HH, Rosa P. The granin (chromogranin/secretogranin) family. Trends Biochem Sci 1991;16:27-30. https://doi.org/10.1016/0968-0004(91)90012-K
- Diaz-Vera J, Morales YG, Hernandez-Fernaud JR, Camacho M, Montesinos MS, Calegari F, et al. Chromogranin B gene ablation reduces the catecholamine cargo and decelerates exocytosis in chromaffin secretory vesicles. J Neurosci 2010;30:950-957. https://doi.org/10.1523/JNEUROSCI.2894-09.2010
- Huttner WB, Natori S. Regulated secretion. Helper proteins for neuroendocrine secretion. Curr Biol 1995;5:242-245. https://doi.org/10.1016/S0960-9822(95)00049-2
- Gorr SU, Shioi J, Cohn DV. Interaction of calcium with porcine adrenal chromogranin A (secretory protein-I) and chromogranin B (secretogranin I). Am J Physiol 1989;257:E247-E254.
- Chanat E, Huttner WB. Milieu-induced, selective aggregation of regulated secretory proteins in the trans-Golgi network. J Cell Biol 1991;115:1505-1519. https://doi.org/10.1083/jcb.115.6.1505
- Marksteiner J, Lechner T, Kaufmann WA, Gurka P, Humpel C, Nowakowski C, et al. Distribution of chromogranin B-like immunoreactivity in the human hippocampus and its changes in Alzheimer's disease. Acta Neuropathol 2000;100:205-212. https://doi.org/10.1007/s004010000239
- Zhang K, Rao F, Rana BK, Gayen JR, Calegari F, King A, et al. Autonomic function in hypertension; role of genetic variation at the catecholamine storage vesicle protein chromogranin B. Circ Cardiovasc Genet 2009;2:46-56. https://doi.org/10.1161/CIRCGENETICS.108.785659
- Kroesen S, Marksteiner J, Leitner B, Hogue-Angeletti R, Fischer-Colbrie R, Winkler H. Rat brain: distribution of immunoreactivity of PE-11, a peptide derived from chromogranin B. Eur J Neurosci 1996;8:2679-2689. https://doi.org/10.1111/j.1460-9568.1996.tb01563.x
- Bauer R, Mayr A, Lederer W, Needham PL, Kilpatrick IC, Fleischhacker WW, et al. Further evidence that behavioral tests and neuropeptide mRNA and tissue level alterations can differentiate between typical and atypical antipsychotic drugs. Neuropsychopharmacology 2000;23:46-55. https://doi.org/10.1016/S0893-133X(00)00086-5
- Kim JH, Park BL, Pasaje CF, Bae JS, Park CS, Cha B, et al. Lack of associations of neuregulin 1 variations with schizophrenia and smooth pursuit eye movement abnormality in a Korean population. J Mol Neurosci 2012;46:476-482. https://doi.org/10.1007/s12031-011-9619-y
- Lee CH, Park BL, Kim LH, Kim DH, Cho SH, Park JS, et al. Relationship between SNP A and P1763 polymorphisms on dystrobrevin binding protein 1 (DTNBP1) gene and smooth pursuit eye movement (SPEM) abnormality in Korean schizophrenic patients. Korean J Biol Psychiatry 2006;13:279-288.
- Lee YJ, Lee MK, Kim YJ, Han SW, Hwang J, Kim KH, et al. Association analysis between the G72/G30 single nucleotide polymorphisms (rs947267 and rs77829) and smooth pursuit eye movement (SPEM) abnormalities of patients with schizophrenia in Korean population. Korean J Schzophr Res, 2010;13:42-49.
- Pasaje CF, Bae JS, Park BL, Cheong HS, Kim JH, Park TJ, et al. Neuregulin 3 does not confer risk for schizophrenia and smooth pursuit eye movement abnormality in a Korean population. Genes Brain Behav 2011;10:828-833. https://doi.org/10.1111/j.1601-183X.2011.00722.x