DOI QR코드

DOI QR Code

Thermal transport in thorium dioxide

  • Park, Jungkyu (Kennesaw State University, Department of Mechanical Engineering) ;
  • Farfan, Eduardo B. (Kennesaw State University, Department of Mechanical Engineering) ;
  • Enriquez, Christian (Kennesaw State University, Department of Mechanical Engineering)
  • Received : 2017.09.28
  • Accepted : 2018.02.12
  • Published : 2018.06.25

Abstract

In this research paper, the thermal transport in thorium dioxide is investigated by using nonequilibrium molecular dynamics. The thermal conductivity of bulk thorium dioxide was measured to be 20.8 W/m-K, confirming reported values, and the phonon mean free path was estimated to be between 7 and 8.5 nm at 300 K. It was observed that the thermal conductivity of thorium dioxide shows a strong dependency on temperature; the highest thermal conductivity was estimated to be 77.3 W/m-K at 100 K, and the lowest thermal conductivity was estimated to be 4.3 W/m-K at 1200 K. In addition, by simulating thorium dioxide structures with different lengths at different temperatures, it was identified that short wavelength phonons dominate thermal transport in thorium dioxide at high temperatures, resulting in decreased intrinsic phonon mean free paths and minimal effect of boundary scattering while long wavelength phonons dominate the thermal transport in thorium dioxide at low temperatures.

Keywords

References

  1. J. Belle, R. Berman, Thorium Dioxide: Properties and Nuclear Applications, USDOE Assistant Secretary for Nuclear Energy, Office of Naval Reactors, Washington, DC, 1984.
  2. M.S. Kazimi, Thorium fuel for nuclear energy, Am. Sci. 91 (5) (2003) 408-415. https://doi.org/10.1511/2003.32.884
  3. M. Lung, O. Gremm, Perspectives of the thorium fuel cycle, Nucl. Eng. Des. 180 (2) (1998) 133-146. https://doi.org/10.1016/S0029-5493(97)00296-3
  4. M. Todosow, A. Galperin, S. Herring, M. Kazimi, T. Downar, A. Morozov, Use of thorium in light water reactors, Nucl. Technol. 151 (2) (2005) 168-176. https://doi.org/10.13182/NT151-168
  5. W.A. Lambertson, M.H. Mueller, F.H. Gunzel, Uranium oxide phase equilibrium systems: IV, UO2-ThO2, J. Am. Ceram. Soc. 36 (12) (1953) 397-399. https://doi.org/10.1111/j.1151-2916.1953.tb12827.x
  6. P. Lidster, H. Bell, The Application of Thoria Yttria Electrolytes in Measuring the Thermodynamic Properties of Chromium in Alloys, Univ. of Newcastleupon-Tyne, Eng, 1969.
  7. E.F. Schubert, J.K. Kim, Solid-state light sources getting smart, Science 308 (5726) (2005) 1274-1278. https://doi.org/10.1126/science.1108712
  8. A. Breslin, W. Harris, Use of Thoriated Tungsten Electrodes in Inert Gas Shielded Arc WeldingdInvestigation of Potential Hazard, Am. Ind. Hyg. Assoc. Q 13 (4) (1952) 191-195.
  9. W.D. Kingery, J. Francl, R. Coble, T. Vasilos, Thermal conductivity: X, data for several pure oxide materials corrected to zero porosity, J. Am. Ceram. Soc. 37 (2) (1954) 107-110. https://doi.org/10.1111/j.1551-2916.1954.tb20109.x
  10. M. Murabayashi, S. Namba, Y. Takahashi, T. Mukaibo, Thermal Conductivity of ThO2-UO2 System, J. Nucl. Sci. Technol. 6 (3) (1969) 128-131. https://doi.org/10.1080/18811248.1969.9732852
  11. C. Pillai, P. Raj, Thermal conductivity of ThO 2 and Th 0.98 U 0.02 O 2, J. Nucl. Mater. 277 (1) (2000) 116-119. https://doi.org/10.1016/S0022-3115(99)00237-8
  12. J.-J. Ma, J.-G. Du, M.-J. Wan, G. Jiang, Molecular dynamics study on thermal properties of ThO 2 doped with U and Pu in high temperature range, J. Alloy. Comp. 627 (2015) 476-482. https://doi.org/10.1016/j.jallcom.2014.11.223
  13. M. Cooper, M. Rushton, R. Grimes, A many-body potential approach to modelling the thermomechanical properties of actinide oxides, J. Phys. Condens. Matter 26 (10) (2014) 105401. https://doi.org/10.1088/0953-8984/26/10/105401
  14. M.W. Cooper, S.T. Murphy, P.C. Fossati, M.J. Rushton, R.W. Grimes, Thermophysical and anion diffusion properties of (Ux, Th1-x) O2, Proc. R. Soc. Lond. A Math. Phys. Eng. Sci. 470 (2171) (2014) 20140427. The Royal Society. https://doi.org/10.1098/rspa.2014.0427
  15. M. Cooper, S. Murphy, M. Rushton, R. Grimes, Thermophysical properties and oxygen transport in the (U x, Pu 1-x) O 2 lattice, J. Nucl. Mater. 461 (2015) 206-214. https://doi.org/10.1016/j.jnucmat.2015.03.024
  16. F. Muller-Plathe, A simple nonequilibrium molecular dynamics method for calculating the thermal conductivity, J. Chem. Phys. 106 (14) (1997) 6082-6085. https://doi.org/10.1063/1.473271
  17. J. Park, M.F. Bifano, V. Prakash, Sensitivity of thermal conductivity of carbon nanotubes to defect concentrations and heat-treatment, J. Appl. Phys. 113 (3) (2013), 034312-034312-11. https://doi.org/10.1063/1.4778477
  18. J. Park and V. Prakash, "Thermal Resistance Across Interfaces Comprising Dimensionally Mismatched Carbon Nanotube-graphene Junctions in 3D Carbon Nanomaterials."
  19. J. Park, V. Prakash, Thermal transport in 3D pillared SWCNTegraphene nanostructures, J. Mater. Res. 28 (2013) 940-951. https://doi.org/10.1557/jmr.2012.395
  20. J. Park, V. Prakash, Phonon scattering and thermal conductivity of pillared graphene structures with carbon nanotube-graphene intramolecular junctions, J. Appl. Phys. 116 (2014).
  21. S. Plimpton, P. Crozier, A. Thompson, LAMMPS-large-scale atomic/molecular massively parallel simulator, Sandia National Laboratories, 2007.
  22. P.M. Morse, Diatomic molecules according to the wave mechanics. II. Vibrational levels, Phys. Rev. 34 (1) (1929) 57. https://doi.org/10.1103/PhysRev.34.57
  23. R.A. Buckingham, The classical equation of state of gaseous helium, neon and argon, Proc. R. Soc. Lond. A Math. Phys. Eng. Sci. 168 (933) (1938) 264-283. The Royal Society. https://doi.org/10.1098/rspa.1938.0173
  24. M. Cooper, R. Grimes, M. Fitzpatrick, A. Chroneos, Modeling oxygen selfdiffusion in UO 2 under pressure, Solid State Ionics 282 (2015) 26-30. https://doi.org/10.1016/j.ssi.2015.09.006
  25. M. Qin, et al., Thermal conductivity and energetic recoils in UO2 using a many-body potential model, J. Phys. Condens. Matter 26 (49) (2014) 495401. https://doi.org/10.1088/0953-8984/26/49/495401
  26. Y.-G. Yoon, R. Car, D.J. Srolovitz, S. Scandolo, Thermal conductivity of crystalline quartz from classical simulations, Phys. Rev. B 70 (1) (2004) 012302.
  27. S. Stackhouse, L. Stixrude, Theoreticalmethods for calculating the lattice thermal conductivity of minerals, Rev. Mineral. Geochem. 71 (1) (2010) 253-269. https://doi.org/10.2138/rmg.2010.71.12
  28. F. Muller-Plathe, D. Reith, Cause and effect reversed in non-equilibrium molecular dynamics: an easy route to transport coefficients, Comput. Theor. Polym. Sci. 9 (3) (1999) 203-209. https://doi.org/10.1016/S1089-3156(99)00006-9
  29. S. Kuang, Atomistic Simulations of Nanoscale Transport Phenomena, 2012.
  30. S. Motoyama, Y. Ichikawa, Y. Hiwatari, A. Oe, Thermal conductivity of uranium dioxide by nonequilibrium molecular dynamics simulation, Phys. Rev. B 60 (1) (1999) 292. https://doi.org/10.1103/PhysRevB.60.292
  31. K. Bakker, E. Cordfunke, R. Konings, R. Schram, Critical evaluation of the thermal properties of Th02 and Th1- yUy02 and a survey of the literature data on Th1- yPuy02, J. Nucl. Mater. 250 (1) (1997) 1-12. https://doi.org/10.1016/S0022-3115(97)00241-9
  32. T. Kutty, et al., Development of CAP process for fabrication of ThO 2-UO 2 fuels Part II: Characterization and property evaluation, J. Nucl. Mater. 373 (1) (2008) 309-318. https://doi.org/10.1016/j.jnucmat.2007.06.011
  33. P.K. Schelling, S.R. Phillpot, P. Keblinski, Comparison of atomic-level simulation methods for computing thermal conductivity, Phys. Rev. B 65 (14) (2002) 144306. https://doi.org/10.1103/PhysRevB.65.144306
  34. T. Watanabe, S.B. Sinnott, J.S. Tulenko, R.W. Grimes, P.K. Schelling, S.R. Phillpot, Thermal transport properties of uranium dioxide by molecular dynamics simulations, J. Nucl. Mater. 375 (3) (2008) 388-396. https://doi.org/10.1016/j.jnucmat.2008.01.016
  35. M. Cooper, S. Middleburgh, R. Grimes, Modelling the thermal conductivity of (U x Th 1-x) O 2 and (U x Pu 1-x) O 2, J. Nucl. Mater. 466 (2015) 29-35. https://doi.org/10.1016/j.jnucmat.2015.07.022
  36. P.G. Klemens, Theory of thermal conduction in thin ceramic films, Int. J. Thermophys. 22 (1) (Jan 2001) 265-275 (in English). https://doi.org/10.1023/A:1006776107140
  37. A.J.H. McGaughey, A. Jain, Nanostructure thermal conductivity prediction by Monte Carlo sampling of phonon free paths, Appl. Phys. Lett. 100 (6) (2012) 061911. https://doi.org/10.1063/1.3683539
  38. W. Bradshaw, C. Matthews, Properties of refractory materials, 1958. Collected Data and References, IMSD-2466.
  39. J. Weilbacher, Measurement of Thermal Diffusivity of Mixed Uranium Plutonium Oxides, vol. 4, High Temp High Press, 1972, pp. 431-438.
  40. P.S. Murti, C. Mathews, Thermal diffusivity and thermal conductivity studies on thorium-lanthanum mixed oxide solid solutions, J. Phys. D Appl. Phys. 24 (12) (1991) 2202. https://doi.org/10.1088/0022-3727/24/12/011
  41. R.K. Behera, C.S. Deo, Atomistic models to investigate thorium dioxide (ThO2), J. Phys. Condens. Matter 24 (21) (2012) 215405. https://doi.org/10.1088/0953-8984/24/21/215405
  42. M. Rahman, B. Szpunar, J. Szpunar, The induced anisotropy in thermal conductivity of thorium dioxide and cerium dioxide, Mater. Res. Express 4 (7) (2017) 075512. https://doi.org/10.1088/2053-1591/aa7c34
  43. B. Szpunar, J. Szpunar, K.-S. Sim, Theoretical investigation of structural and thermo-mechanical properties of thoria, J. Phys. Chem. Solid 90 (2016) 114-120. https://doi.org/10.1016/j.jpcs.2015.10.011
  44. H.Y. Xiao, Y. Zhang, W.J. Weber, Thermodynamic properties of CexTh 1- xO 2 solid solution from first-principles calculations, Acta Mater. 61 (2) (2013) 467-476. https://doi.org/10.1016/j.actamat.2012.09.050
  45. G. Slack, H. Ehrenreich, F. Seitz, D. Turnbull, Solid State Phys. 34 (1979) 1. New York: Academic.
  46. Y. Lu, Y. Yang, P. Zhang, Thermodynamic properties and structural stability of thorium dioxide, J. Phys. Condens. Matter 24 (22) (2012) 225801. https://doi.org/10.1088/0953-8984/24/22/225801
  47. L. Malakkal, B. Szpunar, J.C. Zuniga, R.K. Siripurapu, J.A. Szpunar, First principles calculation of thermo-mechanical properties of thoria using Quantum ESPRESSO, Int. J. Comput. Mater. Sci. Surf. Eng. 5 (02) (2016) 1650008.
  48. B. Szpunar, J. Szpunar, Theoretical investigation of structural and thermomechanical properties of thoria up to 3300 K temperature, Solid State Sci. 36 (2014) 35-40. https://doi.org/10.1016/j.solidstatesciences.2014.07.004
  49. B. Szpunar, L. Malakkal, S. Chung, M.M. Butt, E. Jossou, J.A. Szpunar, Accident Tolerant Composite Nuclear Fuels, in MATEC Web of Conferences, vol. 130, EDP Sciences, 2017, p. 03001.
  50. E. Swartz, R. Pohl, Thermal boundary resistance, Rev. Mod. Phys. 61 (3) (1989) 605. https://doi.org/10.1103/RevModPhys.61.605
  51. D.G. Cahill, R. Pohl, Lattice vibrations and heat transport in crystals and glasses, Annu. Rev. Phys. Chem. 39 (1) (1988) 93-121. https://doi.org/10.1146/annurev.pc.39.100188.000521
  52. V. Sobolev, S. Lemehov, Modelling heat capacity, thermal expansion, and thermal conductivity of dioxide components of inert matrix fuel, J. Nucl. Mater. 352 (1) (2006) 300-308. https://doi.org/10.1016/j.jnucmat.2006.02.077
  53. E. Eser, H. Koc, M. Gokbulut, G. Gursoy, Estimations of heat capacities for actinide dioxide: uo 2, npo 2, tho 2, and puo 2, Nucl. Eng. Tech. 46 (6) (2014) 863-868. https://doi.org/10.5516/NET.07.2014.024
  54. J. Southard, A Modified Calorimeter for High Temperatures. The Heat Content of Silica, Wollastonite and Thorium Dioxide Above $25^{\circ}$ 1, 2, J. Am. Chem. Soc. 63 (11) (1941) 3142-3146. https://doi.org/10.1021/ja01856a072
  55. R. Agarwal, R. Prasad, V. Venugopal, Enthalpy increments and heat capacities of ThO 2 and (Th y U (1-y)) O 2, J. Nucl. Mater. 322 (2) (2003) 98-110. https://doi.org/10.1016/S0022-3115(03)00279-4
  56. J. Fink, Enthalpy and heat capacity of the actinide oxides, Int. J. Thermophys. 3 (2) (1982) 165-200. https://doi.org/10.1007/BF00503638
  57. Y. Lu, Y. Yang, F. Zheng, B.-T. Wang, P. Zhang, Electronic, mechanical, and thermodynamic properties of americium dioxide, J. Nucl. Mater. 441 (1) (2013) 411-420. https://doi.org/10.1016/j.jnucmat.2013.06.043
  58. R. Prasher, T. Tong, A. Majumdar, An acoustic and dimensional mismatch model for thermal boundary conductance between a vertical mesoscopic nanowire/nanotube and a bulk substrate, J. Appl. Phys. 102 (10) (2007) 104312-104410. https://doi.org/10.1063/1.2816260
  59. S. Hepplestone, G. Srivastava, Low-temperature mean-free path of phonons in carbon nanotubes, J. Phys. Conf. 92 (2007) 012076. IOP Publishing. https://doi.org/10.1088/1742-6596/92/1/012076
  60. H. Kim, M.H. Kim, M. Kaviany, Lattice thermal conductivity of UO2 using abinitio and classical molecular dynamics, J. Appl. Phys. 115 (12) (2014) 123510. https://doi.org/10.1063/1.4869669
  61. J.W. Pang, W.J. Buyers, A. Chernatynskiy, M.D. Lumsden, B.C. Larson, S.R. Phillpot, Phonon lifetime investigation of anharmonicity and thermal conductivity of UO 2 by neutron scattering and theory, Phys. Rev. Lett. 110 (15) (2013) 157401. https://doi.org/10.1103/PhysRevLett.110.157401

Cited by

  1. Economic analysis of thorium extraction from monazite vol.51, pp.2, 2019, https://doi.org/10.1016/j.net.2018.11.005
  2. Phonon Scattering and Thermal Conductivity of Actinide Oxides with Defects vol.10, pp.5, 2018, https://doi.org/10.3390/app10051860
  3. Structural, thermodynamic, electronic and elastic properties of Th1−xUxO2 and Th1−xPuxO2 mixed oxides vol.22, pp.11, 2018, https://doi.org/10.1039/d0cp00220h
  4. Dependence of thermal conductivity on fission-product defects and vacancy concentration in thorium dioxide vol.532, pp.None, 2020, https://doi.org/10.1016/j.jnucmat.2020.152050
  5. Thermal conductivity of ThO2: Effect of point defect disorder vol.129, pp.7, 2018, https://doi.org/10.1063/5.0038117
  6. Understanding porosity and temperature induced variabilities in interface, mechanical characteristics and thermal conductivity of borophene membranes vol.11, pp.1, 2018, https://doi.org/10.1038/s41598-021-91705-2