DOI QR코드

DOI QR Code

Safety margin and fuel cycle period enhancements of VVER-1000 nuclear reactor using water/silver nanofluid

  • 투고 : 2017.09.25
  • 심사 : 2018.01.22
  • 발행 : 2018.06.25

초록

In this study, the effects of selecting water/silver nanofluid as both a coolant and a reactivity controller during the first operating cycle of a light water nuclear reactor are investigated. To achieve this, coupled neutronic-thermo-hydraulic analysis is employed to simulate the reactor core. A detailed VVER1000/446 reactor core is modeled in monte carlo code (MCNP), and the model is verified using the porous media approach. Results show that the maximum required level of silver nanoparticles is 1.3 Vol.% at the beginning of the cycle; this value drops to zero at the end of cycle. Due to substitution of water/boric acid with water/Ag nanofluid, reactor operation time at maximum power extends to 357.3 days, and the energy generation increases by about 27.3%. The higher negative coolant temperature coefficient of reactivity in the presence of nanofluid in comparison with the water/boric acid indicates that the reactor is inherently safer. Considering the safety margins in the presence of the nanofluid, minimum departure from nucleate boiling ratio is calculated to be 2.16 (recommendation is 1.75).

키워드

참고문헌

  1. AEOI, Album of Neutron and Physical Characteristics of the 1st Loading of Bushehr Nuclear Power Plant, 2010, 14.BU.1 0.YM.TM.KC PRR103, Tehran, Iran.
  2. G. Ansarifar, M. Ebrahimian, Design and neutronic investigation of the nanofluids application to VVER-1000 nuclear reactor with dual cooled annular fuel, Ann. Nucl. Energy 87 (2016) 39-47. https://doi.org/10.1016/j.anucene.2015.08.013
  3. I.C. Bang, S.H. Chang, Boiling heat transfer performance and phenomena of $Al_2O_3$-water nanofluids from a plain surface in a pool, Int. J. Heat Mass Tran. 48 (12) (2005) 2407-2419. https://doi.org/10.1016/j.ijheatmasstransfer.2004.12.047
  4. V. Bianco, O. Manca, S. Nardini, Numerical investigation on nanofluids turbulent convection heat transfer inside a circular tube, Int. J. Thermal Sci. 50 (3) (2011) 341-349. https://doi.org/10.1016/j.ijthermalsci.2010.03.008
  5. J.F. Briesmeister, MCNPea General Monte Carlo Code for Neutron and Photon Transport, Los Alamos National Laboratory, 1986.
  6. J. Buongiorno, Convective transport in nanofluids, J. Heat Tran. 128 (3) (2006) 240-250. https://doi.org/10.1115/1.2150834
  7. Y.-j. Chen, Y.-y. Li, Z.-h. Liu, Numerical simulations of forced convection heat transfer and flow characteristics of nanofluids in small tubes using two-phase models, Int. J. Heat Mass Tran. 78 (2014) 993-1003. https://doi.org/10.1016/j.ijheatmasstransfer.2014.07.052
  8. A.S. Chinchole, P.P. Kulkarni, A.K. Nayak, Experimental investigation of quenching behavior of heated zircaloy rod in accidental condition of nuclear reactor with water and water based nanofluids, Nanosyst. Phys. Chem. Math. 7 (3) (2016) 528.
  9. H.J.T. Ellingham, Reducibility of oxides and sulfides in metallurgical processes, J. Soc. Chem. Ind. 63 (1944) 125-133. https://doi.org/10.1002/jctb.5000630501
  10. L. Godson, B. Raja, D.M. Lal, S. Wongwises, Experimental investigation on the thermal conductivity and viscosity of silver-deionized water nanofluid, Exp. Heat Tran. 23 (4) (2010) 317-332. https://doi.org/10.1080/08916150903564796
  11. K. Hadad, A. Hajizadeh, K. Jafarpour, B.D. Ganapol, Neutronic study of nanofluids application to VVER-1000, Ann. Nucl. Energy 37 (11) (2010) 1447-1455. https://doi.org/10.1016/j.anucene.2010.06.020
  12. K. Hadad, Z. Kowsar, Twofold application of nanofluids as the primary coolant and reactivity controller in a PWR reactor: case study VVER-1000 in normal operation, Ann. Nucl. Energy 97 (2016) 179-182. https://doi.org/10.1016/j.anucene.2016.07.008
  13. J.E. Jackson, B.V. Borgmeyer, C.A. Wilson, P. Chen, J.E. Bryan, Characteristics of nucleate boiling with gold nanoparticles in water, in: Paper Presented at the ASME 2006 International Mechanical Engineering Congress and Exposition, 2006.
  14. S. Jalili Palandi, A. Rahimi-Sbo, M. Rahimi-Esbo, Thermo-hydraulic investigation of nanofluid as a coolant in VVER-440 fuel rod bundle, Transp. Phenom. Nano Micro Scales 3 (2) (2015) 77-88.
  15. W. Jens, P. Lottes, Analysis of Heat Transfer, Burnout, Pressure Drop and Density Date for High-pressure Water, 1951. Retrieved from.
  16. E.E. Lewis, Nuclear Power Reactor Safety, Wiley, 1977.
  17. D. Milanova, R. Kumar, Role of ions in pool boiling heat transfer of pure and silica nanofluids, Appl. Phys. Lett. 87 (23) (2005) 233107. https://doi.org/10.1063/1.2138805
  18. A. Nayak, P. Kulkarni, A. Chinchole, Experimental investigation on pool boiling critical heat flux with nanofluids, J. Nanofluids 4 (2) (2015) 140-146. https://doi.org/10.1166/jon.2015.1145
  19. M. G. Pop, B. G. Lockamon, U.S. Patent No. 8,160,197. U.S. Patent and Trademark Office, Washington, DC, 2012.
  20. A. Rabiee, A.H. Kamalinia, K. Haddad, Horizontal steam generator thermal hydraulic simulation in typical steady and transient conditions, Nucl. Eng. Des. 305 (2016) 465-475. https://doi.org/10.1016/j.nucengdes.2016.06.004
  21. A. Rabiee, A.H. Kamalinia, K. Hadad, Two-phase flow field simulation of horizontal steam generators, Nucl. Eng. Technol. 49 (1) (2017) 92-102. https://doi.org/10.1016/j.net.2016.08.008
  22. O. Safarzadeh, A.S. Shirani, A. Minuchehr, F. Saadatian-Derakhshandeh, Coupled neutronic/thermo-hydraulic analysis of water/$Al_2O_3$ nanofluids in a VVER-1000 reactor, Ann. Nucl. Energy 65 (2014) 72-77. https://doi.org/10.1016/j.anucene.2013.10.036
  23. H. Togun, H. Abu-Mulaweh, S. Kazi, A. Badarudin, Numerical simulation of heat transfer and separation $Al_2O_3$/nanofluid flow in concentric annular pipe, Int. Commun. Heat Mass Tran. 71 (2016) 108-117. https://doi.org/10.1016/j.icheatmasstransfer.2015.12.014
  24. P. Vassallo, R. Kumar, S. D'Amico, Pool boiling heat transfer experiments in silicaewater nanofluids, Int. J. Heat Mass Tran. 47 (2) (2004) 407-411. https://doi.org/10.1016/S0017-9310(03)00361-2
  25. S. You, J. Kim, K. Kim, Effect of nanoparticles on critical heat flux of water in pool boiling heat transfer, Appl. Phys. Lett. 83 (16) (2003) 3374-3376. https://doi.org/10.1063/1.1619206
  26. E. Zarifi, G. Jahanfarnia, F. Veysi, Neutronic simulation of water-based nanofluids as a coolant in VVER-1000 reactor, Prog. Nucl. Energy 65 (2013a) 32-41. https://doi.org/10.1016/j.pnucene.2013.01.004
  27. E. Zarifi, G. Jahanfarnia, F. Veysi, Thermalehydraulic modeling of nanofluids as the coolant in VVER-1000 reactor core by the porous media approach, Ann. Nucl. Energy 51 (2013b) 203-212. https://doi.org/10.1016/j.anucene.2012.07.041