DOI QR코드

DOI QR Code

함초의 보충식이가 고지방식이 흰쥐의 혈청 및 조직의 중성지방 농도와 골격근 내 PGC-1α 및 PPAR-γ 단백질 발현에 미치는 영향

Effect of Salicornia herbacea L. Supplementation on Tissue Triglyceride Concentrations and PGC-1α & PPAR-γ Expression of Skeletal Muscle of Rats Fed a High-fat Diet

  • 조하형 (선문대학교 일반대학원 체육학과) ;
  • 권대근 (선문대학교 스포츠건강과학연구소) ;
  • 김진우 (선문대학교 식품과학과) ;
  • 송영주 (선문대학교 스포츠건강과학연구소)
  • Cho, Hahyoung (Department of Sports Science, Graduate school, Sunmoon University) ;
  • Kwon, Daekeun (Institute of Sports Health Science, Sunmoon University) ;
  • Kim, JinWoo (Department of Food Science, Sunmoon University) ;
  • Song, Youngju (Institute of Sports Health Science, Sunmoon University)
  • 투고 : 2018.03.02
  • 심사 : 2018.06.21
  • 발행 : 2018.07.30

초록

본 연구는 함초의 보충식이가 고지방식이 흰쥐의 혈청 및 조직의 중성지방 농도와 골격근 내 $PGC-1{\alpha}$$PPAR-{\gamma}$ 단백질 발현에 미치는 영향에 대하여 연구하였다. SD계 수컷 흰쥐를 대조군(CD, n=8), 고지방식이군(HD, n=8), 고지방식이+ 5% 함초 보충식이군(SD, n=8)으로 분류하여 8주간 사육하였다. 그 결과 SD군의 지방조직 중량은 HD군에 비해 약 25%정도 유의하게 감소한 반면 골격근의 중량은 SD군이 HD군에 비해 약 5%정도 유의하게 증가하였다(p<0.01). SD군의 혈청과 간장 내 중성지방은 HD군에 비해 약 20% 유의하게 감소하였다(p<0.05). SD군의 골격근 내 $PGC-1{\alpha}$$PPAR-{\gamma}$ 단백질 발현은 HD군에 비해 1.5배 유의하게 높게 나타났다(p<0.01). 이상의 결과로 부터 함초 보충은 골격근 내 $PGC-1{\alpha}$$PPAR-{\gamma}$ 단백질 발현의 증가를 통하여 지방감소 및 근육량 증가에 효과적이었음이 시사되었다.

This study examined whether the supplementation of Salicornia herbacea L. (SH), a member of the Chenopodiaceae subfamily, affects tissue specific triglyceride (TG) accumulation and the peroxisome proliferator-activated $receptor-{\gamma}$ $coactivator-1{\alpha}$ ($PGC-1{\alpha}$) and peroxisome proliferator-activated $receptor-{\gamma}$ ($PPAR-{\gamma}$) protein expressions of skeletal muscle in rats with a high-fat diet. Sprague-Dawley male rats were randomly divided into three groups: control normal diet group (CD), high-fat diet group (HD), and 5.0% SH supplemented high-fat diet group (SD). The weights of fat tissue of the SD group were reduced by approximately 25%(p<0.01), while the skeletal muscle weight of the SD group increased approximately 5% compared to those in the HD group (p<0.01). The serum and hepatic TG of the SD group decreased approximately 20% compared to those of the HD group (p<0.05). In the protein expression levels in the skeletal muscle, the $PGC-1{\alpha}$ and $PPAR-{\gamma}$ expressions of the SD group were 1.5-folds higher than those of the HD group (p<0.01). From these results, SH supplementation contributes to the improvement of the serum and hepatic TG concentrations, and the $PGC-1{\alpha}$ and $PPAR-{\gamma}$ protein expression levels in the skeletal muscle of fed a high-fat diet. Thus, SH supplementation was effective in reducing fat mass and increasing muscle mass.

키워드

참고문헌

  1. Cho, H. D., Lee, J. H., Jeong, J. H., Kim, J. Y., Yee, S. T., Park, S. K., Lee, M. K. and Seo, K. I. 2016. Production of novel vinegar having antioxidant and anti-fatigue activities from Salicornia herbacea L. J. Sci. Food Agric. 96, 1085-1092. https://doi.org/10.1002/jsfa.7180
  2. Cho, J. Y., Kim, J. Y., Lee, Y. G., Lee, H. J., Shim, H. J., Lee, J. H., Kim, S. J., Ham, K. S. and Moon, J. H. 2016. Four new dicaffeoylquinic acid derivatives from glasswort (Salicornia herbacea L.) and their antioxidative activity. Molecules 21, E1097. https://doi.org/10.3390/molecules21081097
  3. Eu, C. H., Lim, W. Y., Ton, S. H. and bin Abdul Kadir, K. 2010. Glycyrrhizic acid improved lipoprotein lipase expression, insulin sensitivity, serum lipid and lipid deposition in high-fat diet induced obese rats. Lipids Health Dis. 9, 81. https://doi.org/10.1186/1476-511X-9-81
  4. Gurib-Fakim, A. 2006. Medicinal plants: traditions of yesterday and drugs of tomorrow. Mol. Aspects Med. 27, 1-93. https://doi.org/10.1016/j.mam.2005.07.008
  5. Hammarstedt, A., Anderson, C. X., Rotter, S. V. and Smith, U. 2005. The effects of PPAR gamma ligand on the adipose tissue in insulin resistance. Prostaglandins Leukot. Essent. Fatty Acids. 73, 65-75. https://doi.org/10.1016/j.plefa.2005.04.008
  6. Hariri, N. and Thibault, L. 2010. High-fat diet induced obesity in animal models. Nutr. Res. Rev. 23, 270-299. https://doi.org/10.1017/S0954422410000168
  7. Henriksson, J. 1995. Effect of training and nutrition on the development of skeletal muscle. J. Sports Sci. 13, S25-30. https://doi.org/10.1080/02640419508732273
  8. Hofbauer, K. G., Nicholson, J. R. and Boss, O. 2007. The obesity epidemic: Current and future pharmacological treatments. Annu. Rev. Pharmacol. Toxicol. 47, 565-592. https://doi.org/10.1146/annurev.pharmtox.47.120505.105256
  9. Holloszy, J. O. 2011. Regulation of mitochondrial biogenesis and GLUT4 expression by exercise. Compr. Physiol. 1, 921-940.
  10. Huang, C. C., Tung, Y. T., Huang, W. C., Chen, Y. M., Hsu, Y. J. and Hsu, M. C. 2016. Beneficial effects of cocoa, coffee, green tea and garcinia complex supplement on diet induced obesity in rats. BMC Complement. Altern. Med. 16, 100. https://doi.org/10.1186/s12906-016-1077-1
  11. Hwang, J. Y., Lee, S. K., Jo, J. R., Kim, M. E., So, H. A., Cho, C. W. and Kim, J. I. 2007. Hypolipidemic effect of Salicornia herbacea in animal model of type 2 diabetes mellitus. Nutr. Res. Pract. 1, 371-375. https://doi.org/10.4162/nrp.2007.1.4.371
  12. Janesick, A. and Blumberg, B. 2012. Obesogens, stem cells and the developmental programming of obesity. Int. J. Androl. 35, 437-448. https://doi.org/10.1111/j.1365-2605.2012.01247.x
  13. Jang, W. S. and Choung, S. Y. 2013. Antiobesity effects of the ethanol extract of Laminaria japonica Areshoung in high-fat-diet-induced obese rat. Evid. Based Complement. Alternat. Med. 2013, 492807.
  14. Kang, J. Y., Lee, J. H., Kwon, D. K. and Song, Y. J. 2013. Effect of Opuntia humifusa supplementation and acute exercise on insulin sensitivity and associations with PPAR-${\gamma}$ and PGC-$1{\alpha}$ protein expression in skeletal muscle of rats. Int. J. Mol. Sci. 14, 7140-7154. https://doi.org/10.3390/ijms14047140
  15. Karadeniz, F., Kim, J. A., Ahn, B. N., Kwon, M. S. and Kong, C. S. 2014. Effect of Salicornia herbacea on osteoblastogenesis and adipogenesis in vitro. Mar. Drugs 12, 5132-5147. https://doi.org/10.3390/md12105132
  16. Kolka, C. M., Richey, J. M., Castro, A. V., Broussard, J. L., Ionut, V. and Bergman, R. N. 2015. Lipid-induced insulin resistance does not impair insulin access to skeletal muscle. Am. J. Physiol. Endocrinol. Metab. 308, E1001-E1009. https://doi.org/10.1152/ajpendo.00015.2015
  17. Kong, C.S., Kim, Y. A., Kim, M. M., Park, J. S., Kim, J. A., Kim, S. K., Lee, B. J., Nam, T. J. and Seo, Y. 2009. Protective effect of 3-O-${\beta}$-D-Glucoside from Salicornia herbacea against oxidation-induced cell damage. Food Chem. Toxicol. 47, 1914-1920. https://doi.org/10.1016/j.fct.2009.05.002
  18. Kumar, P. M., Venkataranganna, M. V., Manjunath, K., Viswanatha, G. L. and Ashok, G. 2014. Methanolic extract of Momordica cymbalaria enhances glucose uptake in L6 myotubes in vitro by up-regulating PPAR-${\gamma}$ and GLUT4. Chin. J. Nat. Med. 12, 895-900.
  19. Kumar, R., Balaii, S., Uma, T. S. and Sehgal, P. K. 2009. Fruit extracts of Momordica charantia potentiate glucose uptake and up-regulate Glut-4, PPAR gamma and PI3K. J. Ethnopharmacol. 126, 533-537. https://doi.org/10.1016/j.jep.2009.08.048
  20. Lee, S. S., Seo, H. B., Ryu, S. P. and Kwon, T. D. 2015. The effect of swimming exercise and powdered- Salicornia herbacea L. ingestion on glucose metabolism in STZ-induced diabetic rats. J. Exerc. Nutrition Biochem. 19, 235-245. https://doi.org/10.5717/jenb.2015.15083110
  21. Li, L., Yang, G., Li, Q., Tang, Y. and Li, K. 2006. High-fatand lipid-induced insulin resistance in rats: the comparison of glucose metabolism, plasma resistin and adiponectin levels. Ann. Nutr. Metab. 50, 499-505. https://doi.org/10.1159/000098141
  22. Lyssimachou, A., Santos, J. G., Andre, A., Soares, J., Lima, D., Guimaraes, L., Almeida, C. M., Teixeira, C., Castro, L. F. and Santos, M. M. 2015. The mammalian "Obesogen" tributyltin targets hepatic triglyceride accumulation and the transcriptional regulation of lipid metabolism in the liver brain of Zebrafish. PLoS One 10, e0143911. https://doi.org/10.1371/journal.pone.0143911
  23. Maltin, C. A. 2008. Muscle development and obesity: Is there a relationship? Organogenesis 4, 158-169. https://doi.org/10.4161/org.4.3.6312
  24. Moro, C. O. and Basile, G. 2000. Obesity and medicinal plants. Fitoterapia 71, S73-S82. https://doi.org/10.1016/S0367-326X(00)00177-5
  25. Morris, E. M., Meers, G. M., Booth, F. W., Fritsche, K. L., Hardin, C. D., Thyfault, J. P. and Ibdah, J. A. 2012. PGC-$1{\alpha}$ overexpression results in increased hepatic fatty acid oxidation with reduced triacylglycerol accumulation and secretion. Am. J. Physiol. Gastrointest. Liver Physiol. 303, G979-G992. https://doi.org/10.1152/ajpgi.00169.2012
  26. Olson, A. L. 2012. Regulation of GLUT4 and insulin-dependent glucose flux. ISRN Mol. Biol. 2012, 856987.
  27. Opala, T., Rzymski, P., Pischel, I., Wilczak, M. and Wozniak, J. 2006. Efficacy of 12 weeks supplementation of a botanical extract-based weight loss formula on body weight, body composition and blood chemistry in healthy, overweight subjects--a randomized double-blind placebo-controlled clinical trial. Eur. J. Med. Res. 11, 343-350.
  28. Park, M. Y., Lee, K. S. and Sung, M. K. 2005. Effects of dietary mulberry, Korean red ginseng, and banaba on glucose homeostasis in relation to PPAR-alpha, PPAR-gamma, and LPL mRNA expressions. Life Sci. 77, 3344-3354. https://doi.org/10.1016/j.lfs.2005.05.043
  29. Park, S. H., Ko, S. K., Choi, J. G. and Chung, S. H. 2006. Salicornia herbacea prevents high fat diet-induced hyperglycemia and hyperlipidemia in ICR mice. Arch. Pharm. Res. 29, 256-264. https://doi.org/10.1007/BF02969402
  30. Qin, G. W. and Xu, R. S. 1998. Recent advances on bioactive natural products from Chinese medicinal plants. Med. Res. Rev. 18, 375-382. https://doi.org/10.1002/(SICI)1098-1128(199811)18:6<375::AID-MED2>3.0.CO;2-8
  31. Singh, S. and Bennett, R. G. 2010. Relaxin signaling activates peroxisome proliferator-activated receptor gamma. Mol. Cell Endocrinol. 315, 239-245. https://doi.org/10.1016/j.mce.2009.08.014
  32. Singh, S., Simpson, R. L. and Bennett, R. G. 2015. Relaxin activates peroxisome proliferator-activated receptor ${\gamma}$ ($PPAR{\gamma}$) through a pathway involving $PPAR{\gamma}$ coactivator $1{\alpha}$ ($PGC1{\alpha}$). J. Biol. Chem. 290, 950-959. https://doi.org/10.1074/jbc.M114.589325
  33. Zhao, Y., Ling, F., Griffin, T. M., He, T., Towner, R., Ruan, H. and Sun, X. H. 2014. Up-regulation of the Sirtuin 1 (Sirt1) and peroxisome proliferator-activated receptor ${\gamma}$ coactivator-$1{\alpha}$ (PGC-$1{\alpha}$) genes in white adipose tissue of Id1 protein-deficient mice: implications in the protection against diet and age-induced glucose intolerance. J. Biol. Chem. 289, 29112-29122. https://doi.org/10.1074/jbc.M114.571679