DOI QR코드

DOI QR Code

너도밤나무 크레오소트가 흰 쥐의 장내 미생물 변화에 미치는 영향

Effects of Beech-wood Creosote on Intestinal Microflora in Rat

  • 김정아 (경남과학기술대학교 동물소재공학과) ;
  • 유다윤 (경남과학기술대학교 동물소재공학과) ;
  • 김인성 (경남과학기술대학교 동물소재공학과) ;
  • 이철영 (경남과학기술대학교 동물소재공학과) ;
  • 정동기 (제주대학교 생명공학부) ;
  • 이상석 (순천대학교 동물자원과학과) ;
  • 최인순 (신라대학교 생명과학과) ;
  • 조광근 (경남과학기술대학교 동물소재공학과)
  • Kim, Jeong A (Department of Animal Resources Technology, Gyeongnam National University of Science and Technology) ;
  • Yu, Da Yoon (Department of Animal Resources Technology, Gyeongnam National University of Science and Technology) ;
  • Kim, In Sung (Department of Animal Resources Technology, Gyeongnam National University of Science and Technology) ;
  • Lee, Chul Young (Department of Animal Resources Technology, Gyeongnam National University of Science and Technology) ;
  • Jeong, Dong Kee (Faculty of Biotechnology, Jeju National University) ;
  • Lee, Sang Suk (Department of Animal Science and Technology, Sunchon National University) ;
  • Choi, In Soon (Department of Biological Science, Silla University) ;
  • Cho, Kwang Keun (Department of Animal Resources Technology, Gyeongnam National University of Science and Technology)
  • 투고 : 2018.03.06
  • 심사 : 2018.07.24
  • 발행 : 2018.07.30

초록

설사는 경제동물의 이유시기 폐사율을 일으키는 가장 높은 요인이다. 크레오소트는 전통 의약품으로 오랜 세월동안 지사제로 사용되어 왔다. 본 연구는 흰 쥐 모델에서 크레오소트 급여가 동물의 성장 효율 및 장내 미생물에 미치는 영향을 구명할 목적으로 수행되었다. 4주령의 수컷 흰쥐 24마리를 임의로 대조구, 항생제 그룹, 크레오소트 0.4% 그룹, 크레오소트 0.8% 그룹으로 배치하였다. 대조구는 기초사료, 항생제 그룹은 apramycin 0.5%, 크레오소트 그룹은 크레오소트 0.4%와 0.8% 수준으로 하여 예비시험 기간 1주일, 본시험 기간 4주일 동안 급여하였다. 일당증체량은 실험구간 차이가 없었으나, 사료 섭취량은 Creo 0.8 그룹에서 유의적으로 증가하였다(p<0.05). 장내 미생물에 대한 문(phylum) 수준 분석 결과 Creo 0.8 그룹에서 Firmicutes가 감소하고 Bacteroidetes가 증가하여 F/B비율을 감소시키는 것으로 나타났다(p<0.05). 과(family) 수준에서는 Lachnospiraceae가 크레오소트 0.8% 수준에서 증가되었으며(p<0.01), 속(genus) 수준에서는 Turicibacter가 감소되었다(p<0.01). 종(species) 수준에서는 Clostridium disporicum이 감소되었다(p<0.01). 이상의 결과는 쥐에 크레오소트 급여는 사료 섭취량을 증가시키고 장내 미생물의 변화에 영향을 미칠 수 있다는 것을 시사한다.

Diarrhea is one of the main disorders which cause the highest level mortality of the post-weaning economic animal. Beech-wood creosote has been used as a traditional anti-diarrheic medicament for a long time. The present study was conducted to investigate the effects of dietary supplementation of Beech-wood on growth performance and intestinal microbiota in rats. Twelve 4-week-old rats were randomly assigned to one of four dietary groups and fed a basal diet supplemented with none (CON), 0.5% apramycin (ANTI), 0.4% creosote (Creo 0.4), or 0.8% creosote (Creo 0.8) for 4 weeks following 1 week of adaptation period to the respective diet. Average daily gain was not influenced by the dietary treatment whereas average daily feed intake was greatest for the Creo 0.8 group. In the intestinal microbiota at the level of the phylum, the percentage of Firmicutes bacteria decreased but Bacteroidetes increased in the Creo 0.8 group vs. Control, which resulted in a decreased F/B ratio for the former (p<0.05). Moreover, the percentage of Lachnospiraceae was greater at the level of the family for the Creo 0.8 group than for Control, but the percentages of Turicibacter and Clostridium disporicum were less in the former (p<0.01) at the genus and species levels, respectively. Collectively, the present results indicate that dietary supplementation of creosote increases the feed intake and also influence the intestinal microbiota in rats.

키워드

참고문헌

  1. Ataka, K., Ito, M. and Shibata, T. 2005. New views on antidiarrheal effect of wood creosote: is wood creosote really a gastrointestinal antiseptic? Yakugaku Zasshi 125, 937-950. https://doi.org/10.1248/yakushi.125.937
  2. Bermon, S., Petriz, B., Kajėnienė, A., Prestes, J., Castell, L. and Franco, O. L. 2015. The microbiota: an exercise immunology perspective. Exerc. Immunol. Rev. 21, 70-79.
  3. Biagi, E., Candela, M., Fairweather-Tait, S., Franceschi, C. and Brigidi, P. 2012. Aging of the human metaorganism: the microbial counterpart. Age (Dordr) 34, 247-267. https://doi.org/10.1007/s11357-011-9217-5
  4. Breton, J., Massart, S., Vandamme, P., De Brandt, E., Pot, B. and Foligne, B. 2013. Ecotoxicology inside the gut: impact of heavy metals on the mouse microbiome. BMC. Pharmacol. Toxicol. 14, 62. https://doi.org/10.1186/2050-6511-14-62
  5. Canani, R. B., Terrin, G., Cirillo, P., Castaldo, G., Salvatore, F., Cardillo, G., Coruzzo, A. and Troncone, R. 2004. Butyrate as an effective treatment of congenital chloride diarrhea. Gastroenterology 127, 630-634. https://doi.org/10.1053/j.gastro.2004.03.071
  6. Carding, S., Verbeke, K., Vipond, D. T., Corfe, B. M. and Owen, L. J. 2015. Dysbiosis of the gut microbiota in disease. Microb. Ecol. Health Dis. 2, 26191.
  7. Chao, A. 1984. Nonparametric estimation of the number of classes in a population. Scand. J. Statist. 11, 265-270.
  8. Duncan, D. B. 1995. Multiple range and multiple F tests. J. Biometrics 11, 1-42.
  9. Franz, C., Baser, K. H. C. and Windisch, W. 2010. Essential oils and aromatic plants in animal feeding - a European perspective. A review. Flavour Fragr. J. 25, 327-340. https://doi.org/10.1002/ffj.1967
  10. Gallois, M., Rothkötter, H. J., Bailey, M., Stokes, C. R. and Oswald, I. P. 2009. Natural alternatives to in-feed antibiotics in pig production: can immunomodulators play a role? Animal 3, 1644-1661. https://doi.org/10.1017/S1751731109004236
  11. Ghaisas, S., Maher, J. and Kanthasamy, A. 2016. Gut microbiome in health and disease: Linking the microbiomegut-brain axis and environmental factors in the pathogenesis ofsystemic and neurodegenerative diseases. J. Pharmacol. Ther. 158, 52-62. https://doi.org/10.1016/j.pharmthera.2015.11.012
  12. Gophna, U. 2011. Microbiology. The guts of dietary habits. Science 334, 45-46. https://doi.org/10.1126/science.1213799
  13. Hah, K. H., Lee, C. W., Jin, S. K., Kim, I. S., Song, Y. M., Hur, S. J., Kim, H. Y., Lyou, H. J. and Ha, J. H. 2005. Effect of feeding probiotics on physico-chemical properties and sensory evaluation of pork. Kor. J. Food Sci. An. 25, 295-303.
  14. Han, M., Wang, C., Liu, P., Li, D., Li, Y. and Ma, X.2017. Dietary Fiber Gap and Host Gut Microbiota. Protein Pept. Lett. 24, 388-396. https://doi.org/10.2174/0929866524666170220113312
  15. He, Q., Gao, Y., Jie, Z., Yu, X., Laursen, J. M., Xiao, L., Li, Y., Li, L., Zhang, F., Feng, Q., Li, X., Yu, J., Liu, C., Lan, P., Yan, T., Liu, X., Xu, X., Yang, H., Wang, J., Madsen, L., Brix, S., Wang, J., Kristiansen, K. and Jia, H. 2017. Two distinct metacommunities characterize the gut microbiota in Crohn's disease patients. Gigascience 6, 1-11.
  16. Hill, T. C., Walsh, K. A., Harris, J. A. and Moffett, B. F. 2003. Using ecological diversity measures with bacterial communities. J. FEMS. Microbiol. Ecol. 43, 1-11. https://doi.org/10.1111/j.1574-6941.2003.tb01040.x
  17. Hiramoto, K., Yamate, Y., Kobayashi, H., Ishii, M., Miura, T., Sato, E. F. and Inoue, M. 2012. Effect of the smell of Seirogan, a wood Creosote, on dermal and intestinal mucosal immunity and allergic inflammation. J. Clin. Biochem. Nutr. 51, 91-95. https://doi.org/10.3164/jcbn.11-82
  18. Hur, K. Y. 2017. Gut microbiota and metabolic disorders. J. Kor. Diabetes 18, 63-70. https://doi.org/10.4093/jkd.2017.18.2.63
  19. Jang, I. S. 2015. Effects of by-products of herbal medicine on performance, intestinal microbial population, blood biochemical profiles and immunological parameters in broiler chicks. Kor. J. Poult. Sci. 42, 307-314. https://doi.org/10.5536/KJPS.2015.42.4.307
  20. Kazemi-Bonchenar, M., Falahati, R., Poorhamdollah, M., Heidari, S. R. and Pezeshki, A. 2018. Essential oils improved weight gain, growth and feed efficiency of young dairy calves fed 18 or 20% crude protein starter diets. J. Anim. Physiol. Anim. Nutr. (Berl) 17, doi: 10.1111/jpn.12867.
  21. Kim, D. W., Kim, J. H., Kim, S. K., Kang, G. H., Kang, H. K., Lee, S. J. and Kim, S. H. 2009. A study on the efficacy of dietary supplementation of organic acid mixture in broiler chicks. J. Anim. Sci. Technol. (Kor.) 51, 207-216. https://doi.org/10.5187/JAST.2009.51.3.207
  22. Kim, D. W., Kim, S. H., Yu, D. J., Kang, G. H., Kim, J. H., Kang, H. G., Jang, B. G., Na, J. C., Suh, O. S., Jang, I. S. and Lee, K. H. 2007. Effects of single or mixed supplements of plant extract, fermented medicinal plants and lactobacillus on growth performance in broilers. Kor. J. Poult. Sci. 34, 187-196. https://doi.org/10.5536/KJPS.2007.34.3.187
  23. Kim, O. S., Cho, Y. J., Lee, K., Yoon, S. H., Kim, M., Na, H., Park, S. C., Jeon, Y. S., Lee, J. H., Yi, H., Won, S. and Chun, J. 2012. Introducing EzTaxon-e: a prokaryotic 16S rRNA gene sequence database with phylotypes that represent uncultured species. Int. J. Syst. Evol. Microbiol. 62, 716-721. https://doi.org/10.1099/ijs.0.038075-0
  24. Ko, Y. H., Yang, H. Y., Kang, S. Y., Kim, E. S. and Jang, I. S. 2007. Effects of a bend of prunus mume extract as an alternative to antibiotics on growth performance, activity of figestive enzymes and microflora population in broiler chickens. J. Anim. Sci. Technol. (Kor.) 49, 611-620. https://doi.org/10.5187/JAST.2007.49.5.611
  25. Kohl, K. D. and Dearing, M. D. 2012. Experience matters: prior exposure to plant toxins enhances diversity of gut microbes in herbivores. Ecol. Lett. 15, 1008-1015. https://doi.org/10.1111/j.1461-0248.2012.01822.x
  26. Lee, C. H., Jo, I. H., Shon, J. C. and Lee, S. H. 2009. Effect of dietary supplementation of organic acid and antibiotics mixture on growth performances and blood metabolites in growing pigs. Organic Agriculture 17, 237-251.
  27. Lee, S. B. and Choi, S. H. 2006. Isolation and Identification of Probiotic Lactobacillus Isolates for Calf Meal Supplements. Kor. J. Food Sci. An. 26, 106-112.
  28. Leitner, G., Waiman, R. and Heller, E. D. 2001. The effect of apramycin on colonization of pathogenic Escherichia coli in the intestinal tract of chicks. Vet. Q. 23, 62-66. https://doi.org/10.1080/01652176.2001.9695083
  29. Li, W. and Godzik, A. 2006. Cd-hit: a fast program for clustering and comparing large sets of protein or nucleotide sequences. J. Bioinformatics 22, 1658-1659. https://doi.org/10.1093/bioinformatics/btl158
  30. Lim, S. K., Nam, H. M., Lee, H. S., Kim, A. R., Jang, G. C., Jung, S. C. and Kim, T. S. 2013. Prevalence and characterization of apramycin-resistant Salmonella enterica serotype Typhimurium isolated from healthy and diseased pigs in Korea during 1998 through 2009. J. Food Prot. 76, 1443-1446. https://doi.org/10.4315/0362-028X.JFP-13-069
  31. McOrist, A. L., Warhurst, M., McOrist, S. and Bird, A. R. 2001. Colonic infection by Bilophila wadsworthia in pigs. J. Clin. Microbiol. 39, 1577-1579. https://doi.org/10.1128/JCM.39.4.1577-1579.2001
  32. Moriguchi, N., Sato, A., Shibata, T. and Yoneda, Y.2011. A historical review of the therapeutic use of wood creosote. Part II: Original plant source of crude drug wood creosote. Yakushigaku Zasshi 46, 13-20.
  33. Ogata, N., Baba, T. and Shibata, T. 1993. Demonstration of antidiarrheal and antimotility effects of wood Creosote. J. Pharmacology 46, 173-180. https://doi.org/10.1159/000139043
  34. Quynh, A. N., Sharma, N., Cho, K. K., Yeo, T. J., Kim, K. B., Jeong, C. Y., Min, T. S., Kim, J. Y., Kim, J. N. and Jeong, D. K. 2014. Efficacious rat model displays non-toxic effect with Korean beechwood Creosote: a possible antibiotic substitute. J. Biotechnol. Biotechnol. Equip. 28, 447-454. https://doi.org/10.1080/13102818.2014.931696
  35. Reyer, H., Zentek, J., Männer, K., Youssef, I. M. I., Aumiller, T., Weghuber, J., Wimmers, K. and Mueller, A. S. 2017. Possible molecular mechanisms by which an essential oil blend from star anise, rosemary, thyme, and oregano and saponins increase the performance and ileal protein digestibility of growing broilers. J. Agric. Food Chem. 65, 6821-6830. https://doi.org/10.1021/acs.jafc.7b01925
  36. Salaritabar, A., Darvishi, B., Hadjiakhoondi, F., Manayi, A., Sureda, A., Nabavi, S. F., Fitzpatrick, L. R., Nabavi, S. M. and Bishayee, A. 2017. Therapeutic potential of flavonoids in inflammatory bowel disease: A comprehensive review. World J. Gastroenterol. 23, 5097-5114. https://doi.org/10.3748/wjg.v23.i28.5097
  37. Simeoli, R., Mattace Raso, G., Pirozzi, C., Lama, A., Santoro, A., Russo, R., Montero-Melendez, T., Berni Canani, R., Calignano, A., Perretti, M. and Meli, R. 2017. An orally administered butyrate-releasing derivative reduces neutrophil recruitment and inflammation in dextran sulphate sodiuminduced murine colitis. Br. J. Pharmacol. 174, 1484-1496. https://doi.org/10.1111/bph.13637
  38. Sodhi, S. S., Kim, J. H., Sharma, N., Cho, K. K., Kim, J. Y., Kim, K. B., Jeong, C. Y., Yoon, M. Y., Oh, S. J. and Jeong, D. K. 2014. Korean Beechwood Creosote as a substitute to an antibiotic for post weaning diarrhea in piglets. Pak. Vet. J. 34, 341-346.
  39. Sun, J., Huang, T., Chen, C., Cao, T. T., Cheng, K., Liao, X. P. and Liu, Y. H. 2017. Comparison of fecal microbial composition and antibiotic resistance genes from swine, farm workers and the surrounding villagers. Sci. Rep. 7, 4965. https://doi.org/10.1038/s41598-017-04672-y
  40. Tang, Z. R., Yin, Y. L., Nyachot,i C. M., Huang, R. L., Li, T. J., Yang, C., Yang, X. J., Gong, J., Peng, J., Qi, D. S., Xing, J. J., Sun, Z. H. and Fan, M. Z. 2005. Effect of dietary supplementation of chitosan and galacto-mannan-oligosaccharide on serum parameters and the insulin-like growth factor-I mRNA expression in early-weaned piglets. Domest. Anim. Endocrinol. 28, 430-441. https://doi.org/10.1016/j.domaniend.2005.02.003
  41. Kuge, T., Meerveld, B. G. V. and Sokabe, M. 2006. Stress-induced breakdown of intestinal barrier function in the rat: Reversal by wood creosote. Life Sci. 79, 913-918. https://doi.org/10.1016/j.lfs.2006.03.002
  42. Turnbaugh, P. J., Backhed, F., Fulton, L. and Gordon, J. I. 2008. Diet-induced obesity is linked to marked but reversible alterations in the mouse distal gut microbiome. Cell Host Microbe 3, 213-223. https://doi.org/10.1016/j.chom.2008.02.015
  43. Vernocchi, P., Del Chierico, F., Quagliariello, A., Ercolini, D., Lucidi, V. and Putignani, L. 2017. A metagenomic and in silico functional prediction of gut microbiota profiles may concur in discovering new cystic fibrosis patient-targeted probiotics. Nutrients 9, 1342. https://doi.org/10.3390/nu9121342
  44. Wang, A., Ling, Z., Yang, Z., Kiela, P. R., Wang, T., Wang, C., Cao, L., Geng, F., Shen, M., Ran, X., Su, Y., Cheng, T. and Wang, J. 2015. Gut microbial dysbiosis may predict diarrhea and fatigue in patients undergoing pelvic cancer radiotherapy: a pilot study. PLoS One 10, e0126312. https://doi.org/10.1371/journal.pone.0126312
  45. Yan, H. and Ajuwon, K. M. 2017. Butyrate modifies intestinal barrier function in IPEC-J2 cells through a selective upregulation of tight junction proteins and activation of the Akt signaling pathway. PLoS One 12, e0179586. https://doi.org/10.1371/journal.pone.0179586