DOI QR코드

DOI QR Code

Localization and Accumulated Concentration Changes of Mercury Compound in Reproductive Organs of Female Mice with Time

암컷 마우스 생식기관 내 수은 화합물의 위치와 시간에 따른 축적된 수은 농도 변화

  • Kim, Young Eun (Department of Biology, College of Life Science and Natural Resources, Sunchon National University) ;
  • Kim, Yu Seon (Department of Biology, College of Life Science and Natural Resources, Sunchon National University) ;
  • Cho, Hyun Wook (Department of Biology, College of Life Science and Natural Resources, Sunchon National University)
  • 김영은 (순천대학교 생명산업과학대학 생물학과) ;
  • 김유선 (순천대학교 생명산업과학대학 생물학과) ;
  • 조현욱 (순천대학교 생명산업과학대학 생물학과)
  • Received : 2018.03.08
  • Accepted : 2018.06.04
  • Published : 2018.07.30

Abstract

This study was performed to investigate the localization and concentration changes of mercury compound in female reproductive organs with time. Methylmercuric chloride was subcutaneously injected weekly into pubescent female mice for 3 weeks. For the concentration changes of mercury with time, the mice were sacrificed at 10, 150, and 300 days post treatment (DPT). Body and organ weights were not significantly different between the control and mercury-treated groups, except for 10 DPT in body weight. Localization of accumulated mercury was identified by the autometallography method. Localization of mercury compounds in the uterus, ovary, and ovum was analyzed with a light microscope. In the uterus, mercury was densely located in the stroma cells and surface epithelium of the perimetrium at 10 DPT. Mercury concentration was decreased at 150 DPT and did not appear at 300 DPT. In the ovary, mercury particles were distributed in the stroma cells of the cortex region, cells of the theca around the follicle, and the corpus luteum at 10 DPT. Mercury was concentrated in the medulla region at 150 DPT and was not distributed at 300 DPT. In the ovum, mercury particles were mainly located in the marginal region at 10 and 150 DPT. Mercury concentration was decreased and evenly distributed at 300 DPT. These results suggest that hormone synthesis, implantation, and developing embryos will be affected by mercury compound in the female mouse.

본 연구에서는 암컷 생식기관 내 축적된 수은 화합물의 위치와 시간에 따른 수은의 농도 변화를 확인하기 위하여 수행하였다. Methylmercuric chloride를 일주일에 한 번씩 총 3주간 사춘기 암컷 마우스에 피하 주사하였다. 시간에 따른 수은의 농도 변화를 확인하기 위해 투여 종료 후 10일, 150일, 300일째에 희생하였다. 투여 종료 후 10일에 희생한 경우 체중에 유의한 차이가 있었지만, 그 외 경우에는 체중과 난소의 무게에 있어서 대조군과 수은 투여군 사이에 유의한 차이가 없었다. 축적된 수은의 위치를 오토메탈로그라피 방법으로 확인하였고, 자궁, 난소, 난자에 축적된 수은 화합물의 위치를 광학현미경으로 분석하였다. 자궁의 경우, 투여 종료 후 10일째에 수은이 지질 세포와 자궁바깥막의 중피에 위치하였다. 150일째에는 수은 농도가 감소하였으며 300일째에는 나타나지 않았다. 투여 종료 후 10일째 난소의 경우, 수은이 피질 부위의 지질 세포와, 난포를 둘러싸는 난포막 세포, 황체에 분포하였다. 150일째에는 수은이 난소의 수질 부위에 축적되었으며, 300일째에는 분포하지 않았다. 투여 종료 후 10과 150일째 난자의 경우, 수은이 난자의 주변부에 주로 분포하였으며, 300일째에는 수은 농도가 감소되고 난자 전체에 고르게 분포하였다. 이런 결과는 암컷 마우스에서 수은에 의해 호르몬 생성, 착상, 그리고 발생 중인 배아가 영향을 받을 수 있다는 사실을 제시해 준다.

Keywords

References

  1. Al-Saleh, I., Shinwari, N. and Al-Amodi, M. 2009. Accumulation of mercury in ovaries of mice after the application of skin-lightening creams. Biol. Trace Element Res. 131, 43-54. https://doi.org/10.1007/s12011-009-8341-x
  2. Atkinson, A., Thompson, S. J., Khan, A. T., Graham, T. C., Ali, S., Shannon, C., Clarke, O. and Upchurch, L. 2001. Assessment of a two-generation reproductive and fertility study of mercuric chloride in rats. Food Chem. Toxicol. 39, 73-84. https://doi.org/10.1016/S0278-6915(00)00096-X
  3. Bates, M. N. 2006. Mercury amalgam dental fillings: an epidemiologic assessment. Int. J. Hyg. Environ. Health 209, 309-316. https://doi.org/10.1016/j.ijheh.2005.11.006
  4. Boujbiha, M. A., Hamden, K., Guermazi, F., Bouslama, A., Omezzine, A., Kammoun, A. and El Feki, A. 2009. Testicular toxicity in mercuric chloride treated rats: association with oxidative stress. Reprod. Toxicol. 28, 81-89. https://doi.org/10.1016/j.reprotox.2009.03.011
  5. Bridges, C. C., Joshee, L. and Zalups, R. K. 2011. MRP2 and the handling of mercuric ions in rats exposed acutely to inorganic and organic species of mercury. Toxicol. Appl. Pharmacol. 251, 50-58. https://doi.org/10.1016/j.taap.2010.11.015
  6. Bridges, C. C., Joshee, L. and Zalups, R. K. 2014. Aging and the disposition and toxicity of mercury in rats. Exp. Gerontol. 53, 31-39. https://doi.org/10.1016/j.exger.2014.02.006
  7. Cho, H. W., Kim, M. H., Hwang, K. Y., Min, B. W., Park, J. C. and Kim, J. H. 1999. Effects of Oenanthe javanica extracts on mercury accumulation in organs of the mouse. J. Toxicol. Pub. Health 15, 1-8.
  8. Choe, E. S., Kim, K. R., Yee, S. T., Kim, M. H., Min, B. W. and Cho, H. W. 2003. Localization of methyl mercuric chloride in the reproductive tract of male mice. J. Toxicol. Pub. Health 19, 153-159.
  9. Clarkson, T. W., Vyas, J. B. and Ballatori, N. 2007. Mechanisms of mercury disposition in the body. Am. J. Ind. Med. 50, 757-764. https://doi.org/10.1002/ajim.20476
  10. Colquitt, P. J. 1995. The effect of occupational exposure to mercury vapour on the fertility of female dental assistants. Occup. Environ. Med. 52, 214.
  11. Cordier, S., Deplan, F., Mandereau, L. and Hemon, D. 1991. Paternal exposure to mercury and spontaneous abortions. Br. J. Ind. Med. 48, 375-381.
  12. Danscher, G. and Montagnese, C. 1994. Autometallographic localization of synaptic vesicular zinc and lysosomal gold, silver, and mercury. J. Histotechnol. 17, 15-22. https://doi.org/10.1179/his.1994.17.1.15
  13. Danscher, G., Stoltenberg, M. and Juhl, S. 1994. How to detect gold, silver and mercury in human brain and other tissues by autometallographic silver amplification. Neuropathol. Appl. Neurobiol. 20, 454-467. https://doi.org/10.1111/j.1365-2990.1994.tb00996.x
  14. Dufresne, J. and Cyr, D. G. 1999. Effects of short-term methylmercury exposure on metallothionein mRNA levels in the testis and epididymis of the rat. J. Androl. 20, 769-778.
  15. Emanuele, M. A., LaPaglia, N., Steiner, J., Jabamoni, K., Hansen, M., Kirsteins, L. and Emanuele, N. V. 1998. Reversal of ethanol-induced testosterone suppression in peripubertal male by opiate blockade. Alcohol. Clin. Exp. Res. 22, 1199-1204. https://doi.org/10.1111/j.1530-0277.1998.tb03899.x
  16. Ferguson, K. K., O'Neill, M. S. and Meeker, J. D. 2013. Environmental contaminant exposures and preterm birth: a comprehensive review. J. Toxicol. Environ. Health Part B Crit. Rev. 16, 69-113. https://doi.org/10.1080/10937404.2013.775048
  17. Fossato da Silva, D. A., Teixeira, C. T., Scarano, W. R., Favareto, A. P., Fernandez, C. D., Grotto, D., Barbosa, F. Jr. and Kempinas Wde, G. 2011. Effects of methylmercury on male reproductive functions in Wistar rats. Reprod. Toxicol. 31, 431-439. https://doi.org/10.1016/j.reprotox.2011.01.002
  18. Garman, R. H., Weiss, B. and Evans, H. L. 1975. Alkylmercurial encephalopathy in the monkey (Saimiri sciureus and Macaca arctoides): a histopathologic and autoradiographic study. Acta Neuropathol. 32, 61-74. https://doi.org/10.1007/BF00686067
  19. Grandjean, P., Budtz-Jorgensen, E., Steuerwald, U., Heinzow, B., Needham, L. L., Jorgensen, P. J. and Weihe, P. 2003. Attenuated growth of breast-fed children exposed to increased concentrations of methylmercury and polychlorinated biphenyls. FASEB J. 17, 699-701. https://doi.org/10.1096/fj.02-0661fje
  20. Havarinasab, S., Bjorn, E., Nielsen, J. B. and Hultman, P. 2007. Mercury species in lymphoid and non-lymphoid tissues after exposure to methyl mercury: correlation with autoimmune parameters during and after treatment in susceptible mice. Toxicol. Appl. Pharmacol. 221, 21-28. https://doi.org/10.1016/j.taap.2007.02.009
  21. Khan, A. T., Atkinson, A., Graham, T. C., Thompson, S. J., Ali, S. and Shireen, K. F. 2004. Effects of inorganic mercury on reproductive performance of mice. Food Chem. Toxicol. 42, 571-577. https://doi.org/10.1016/j.fct.2003.10.018
  22. Klein, R., Herman, S. P., Brubaker, P. E., Lucier, G. W. and Krigman, M. R. 1972. A model of acute methyl mercury intoxication in rats. Arch. Pathol. 93, 408-418.
  23. Martin, M. B., Reiter, R., Pham, T., Avellanet, Y. R., Camara, J., Lahm, M., Pentecost, E., Pratap, K., Gilmore, B. A., Divekar, S., Dagata, R. S., Bull, J. L. and Stoica, A. 2003. Estrogen-like activity of metals in MCF-7 breast cancer cells. Endocrinology 144, 2425-2436. https://doi.org/10.1210/en.2002-221054
  24. Martin, M. D. and Woods, J. S. 2006. The safety of dental amalgam in children. Expert Opin. Drug Saf. 5, 773-781. https://doi.org/10.1517/14740338.5.6.773
  25. Mathur, P. P. and D'Cruz, S. C. 2011. The effect of environmental contaminants on testicular function. Asian J. Androl. 13, 585-591. https://doi.org/10.1038/aja.2011.40
  26. Morcillo, M. A. and Santamaria, J. 1996. Mercury dis-tribution and renal metallothionein induction after subchronic oral exposure in rats. Biometals 9, 213-220. https://doi.org/10.1007/BF00817918
  27. Nishiyama, S., Taguchi, T. and Onosaka, S. 1987. Induction of zinc-thionein by estradiol and protective effects on inorganic mercury-induced renal toxicity. Biochem. Pharmacol. 36, 3387-3391. https://doi.org/10.1016/0006-2952(87)90315-7
  28. Passos, C. J., Mergler, D., Lemire, M., Fillion, M. and Guimaraes, J. R. 2007. Fish consumption and bioindicators of inorganic mercury exposure. Sci. Total Environ. 373, 68-76. https://doi.org/10.1016/j.scitotenv.2006.11.015
  29. Pollard, K. M. and Hultman, P. 2007. Skin-lightening creams are a possible exposure risk for systemic lupus erythematosus: comment on the article by Finckh et al. Arthritis Rheum. 56, 1721.
  30. Rao, M. V. 1989. Histophysiological changes of sex organs in methylmercury intoxicated mice. Endocrinol. Exp. 23, 55-62.
  31. Rattan, S., Zhou, C., Chiang, C., Mahalingam, S., Brehm, E. and Flaws, J. A. 2017. Exposure to endocrine disruptors during adulthood: consequences for female fertility. J. Endocrinol. 233, R109-R129. https://doi.org/10.1530/JOE-17-0023
  32. Schlawicke Engstrom, K., Stromberg, U., Lundh, T., Johansson, I., Vessby, B., Hallmans, G., Skerfving, S. and Broberg, K. 2008. Genetic variation in glutathione-related genes and body burden of methylmercury. Environ. Health Perspect 116, 734-739 https://doi.org/10.1289/ehp.10804
  33. Sikorski, R., Juszkiewicz, T., Paszkowski, T. and SzprengierJuszkiewicz, T. 1987. Women in dental surgeries: reproductive hazards in occupational exposure to metallic mercury. Int. Arch. Occup. Environ. Health 59, 551-557. https://doi.org/10.1007/BF00377918
  34. Silva, I. A., El Nabawi, M., Hoover, D. and Silbergeld, E. K. 2005. Prenatal $HgCl_2$ exposure in BALB/c mice: gender-specific effects on the ontogeny of the immune system. Dev. Comp. Immunol. 29, 171-183. https://doi.org/10.1016/j.dci.2004.05.008
  35. Suter, K. E. 1975. Studies on the dominant-lethal and fertility effects of the heavy metal compounds methylmercuric hydroxide, mercuric chloride, and cadmium chloride in male and female mice. Mutat. Res. 30, 365-374. https://doi.org/10.1016/0027-5107(75)90007-X
  36. Yasutake, A. and Nakamura, M. 2011. Induction by mercury compounds of metallothioneins in mouse tissues: inorganic mercury accumulation is not a dominant factor for metallothionein induction in the liver. J. Toxicol. Sci. 36, 365-372. https://doi.org/10.2131/jts.36.365
  37. Yoshida, M., Honda, A., Watanabe, C., Satoh, M. and Yasutake, A. 2014. Neurobehavioral changes in response to alterations in gene expression profiles in the brains of mice exposed to low and high levels of mercury vapor during postnatal development. J. Toxicol. Sci. 39, 561-570. https://doi.org/10.2131/jts.39.561
  38. Zalups, R. K. 2000. Molecular interactions with mercury in the kidney. Pharmacol. Rev. 52, 113-143.