DOI QR코드

DOI QR Code

Celecoxib Enhances Susceptibility of Multidrug Resistant Cancer Cells to 17-Allylamino-17-demethoxy geldanamycin through Dual Induction of Apoptotic and Autophagic Cell Death

Celecoxib의 apoptotic 및 autophagic cell death 유도에 의한 항암제 다제내성 암세포의 17-allylamino-17-demethoxygeldanamycin 감수성 증강

  • Moon, Hyun-Jung (Department of Biochemistry, Pusan National University School of Medicine) ;
  • Park, So-Young (Department of Biochemistry, Pusan National University School of Medicine) ;
  • Lee, Su-Hoon (Department of Biochemistry, Pusan National University School of Medicine) ;
  • Kang, Chi-Dug (Department of Biochemistry, Pusan National University School of Medicine) ;
  • Kim, Sun-Hee (Department of Biochemistry, Pusan National University School of Medicine)
  • 문현정 (부산대학교 의학전문대학원 의과학과 생화학교실) ;
  • 박소영 (부산대학교 의학전문대학원 의과학과 생화학교실) ;
  • 이수훈 (부산대학교 의학전문대학원 의과학과 생화학교실) ;
  • 강치덕 (부산대학교 의학전문대학원 의과학과 생화학교실) ;
  • 김선희 (부산대학교 의학전문대학원 의과학과 생화학교실)
  • Received : 2018.03.08
  • Accepted : 2018.05.29
  • Published : 2018.07.30

Abstract

Autophagy is a complex signaling process and has been implicated in tumor suppression and anticancer therapy resistance. Autophagy can produce tumor-suppressive effect by inducing autophagic cell death, either in collaboration with apoptosis. In this current study, we found that celecoxib (CCB), a nonsteroidal anti-inflammatory drug (NSAID) with multifaceted effects, induced autophagy including enhanced LC3 conversion (LC3-I to LC3-II) and reduced autophagy substrate protein p62 level in multidrug-resistant (MDR) cancer cells. CCB sensitized human multidrug resistant (MDR) cancer cells to the ansamycin-based HSP90 inhibitor 17-allylamino-17-demethoxygeldanamycin (17-AAG), a benzoquinoid ansamycin, which causes the degradation of several oncogenic and signaling proteins, by inducing autophagic cell death and apoptosis. CCB significantly augmented 17-AAG-mediated level of LC3-II/LC-I, indicating the combined effect of 17-AAG and CCB on the induction of autophagy. Autophagic degradation of mutant p53 (mutp53) and activation of caspase-3 in 17-AAG-treated MDR cells were accelerated by CCB. Inhibition of caspase-3-mediated apoptotic pathway by Z-DEVD-FMK, a caspase-3 inhibitor, did not completely block CCB-induced cell death in MCF7-MDR cells. In addition, treatment of MDR cells with Z-DEVD-FMK failed to prevent activation of autophagy by combined treatment with 17-AAG and CCB. Based on our findings, the ability of clinically used drug CCB to induce autophagy has important implications for its development as a sensitizing agent in combination with Hsp90 inhibitor of MDR cancer.

오토파지(Autophagy, 자가포식)는 복합적인 신호과정으로, 암세포의 증식 억제 및 항암제에 대한 내성 획득의 상반적인 조절에도 관여한다. 오토파지의 암 억제 효과는 아팝토시스(apoptosis)와 상호협력으로 오토파지성세포 사멸의 유도에 기인된다. 본 연구에서는 NSAID 계열의 다기능 약물인 celecoxib (CCB)이 아팝토시스 및 오토파지의 복합적인 유도로, 항암제 다제내성(multidrug resistant, MDR) 암세포의 Hsp90 molecular chaperone inhibitor인 17-allylamino-17-demethoxygeldanamycin (17-AAG)에 대한 감수성을 증가시키는 활성이 있음을 밝혔다. 17-AAG 처리에 의한 항암제 다제내성 암세포의 변이형p53 분해 및 caspase-3 활성은 CCB 처리로 촉진되었다. MCF7-MDR세포에서 Z-DEVD-FMK 처리에 의한 caspase-3-매개의 아팝토시스 경로 차단은 CCB 유도의 세포 사멸을 완전히 차단시키지 못함을 알 수 있었으며, 또한 17-AAG과 CCB 병합 처리에 의한 오토파지 활성화는 Z-DEVD-FMK에 의해 방해되지 않는 것을 알 수 있었다. 본 연구의 결과를 토대로, CCB의 오토파지 유도 활성은 항암제 다제내성 암의 Hsp90 inhibitor에 대한 감수성 증가를 위한 약물 개발에, CCB가 효과적인 병용 약물로서 제안 될 수 있다.

Keywords

References

  1. Chen, N. and Karantza, V. 2011. Autophagy as a therapeutic target in cancer. Cancer Bio. Thr. 11, 157-168. https://doi.org/10.4161/cbt.11.2.14622
  2. Cheng, J., Chen, J., Xie, B. and Wei, H. L. 2013. Acquired multidrug resistance in human K562/ADM cells is associated with enhanced autophagy. Toxicol. Mech. Methods 23, 678-683. https://doi.org/10.3109/15376516.2013.843105
  3. Choudhury, S., Kolukula, V. K., Preet, A., Albanese, C. and Avantaggiati, M. L. 2013. Dissecting the pathways that destabilize mutant p53 The proteasome or autophagy? Cell Cycle 12, 1022-1029. https://doi.org/10.4161/cc.24128
  4. Garufi, A,, Pucci, D., D'Orazi, V., Cirone, M., Bossi, G., Avantaggiati, M. L. and D'Orazi, G. 2014. Degradation of mutant p53H175 protein by Zn(II) through autophagy. Cell Death Dis. 5, e1271. https://doi.org/10.1038/cddis.2014.217
  5. Helgason, G. V., Karvela, M. and Holyoake, T. L.2011. Kill one bird with two stones: potential efficacy of BCR-ABL and autophagy inhibition in CML. Blood 118, 2035-2043. https://doi.org/10.1182/blood-2011-01-330621
  6. Huang, J. M., Sheard, M. A., Ji, L. Y., Sposto, R. and Keshelava, N. 2010. Combination of vorinostat and flavopiridol is selectively cytotoxic to multidrug-resistant neuroblastoma cell lines with mutant TP53. Mol. Cancer Ther. 9, 3289-3301. https://doi.org/10.1158/1535-7163.MCT-10-0562
  7. Kaewpiboon, C., Surapinit, S., Malilas, W., Moon, J., Phuwapraisirisan, P., Tip-Pyang, S., Johnston, R. N., Koh, S. S., Assavalapsakul, W. and Chung, Y. H. 2014. Feroniellin A-induced autophagy causes apoptosis in multidrug- resistant human A549 lung cancer cells. Int. J. Oncol. 44, 1233-1242. https://doi.org/10.3892/ijo.2014.2297
  8. Kastan, M. B. and Berkovich, E. 2007. p53: a two-faced cancer gene. Nat. Cell Biol. 9, 489-491. https://doi.org/10.1038/ncb0507-489
  9. Kim, H. B., Lee, S. H., Um, J. H., Oh, W. K., Kim, D. W., Kang, C. D. and Kim, S. H. 2015. Sensitization of multidrug-resistant human cancer cells to Hsp90 inhibitors by down-regulation of SIRT1. Oncotarget 6, 36202-36218.
  10. Kroemer, G., Marino, G. and Levine, B. 2010. Autophagy and the integrated stress response. Mol. Cell. 40, 280-293. https://doi.org/10.1016/j.molcel.2010.09.023
  11. Li, Y. J., Lei, Y. H., Yao, N., Wang, C. R., Hu, N., Ye, W. C., Zhang, D. M. and Chen, Z. S. 2017. Autophagy and multidrug resistance in cancer. Chin. J. Cancer 36, 52. https://doi.org/10.1186/s40880-017-0219-2
  12. Lin, K., Rockliffe, N., Johnson, G. G., Sherrington, P. D. and Pettitt, A. R. 2008. Hsp90 inhibition has opposing effects on wild-type and mutant p53 and induces p21 expression and cytotoxicity irrespective of p53/ATM status in chronic lymphocytic leukaemia cells. Oncogene 27, 2445-2455. https://doi.org/10.1038/sj.onc.1210893
  13. Liu, M., Li, C. M., Chen, Z. F., Ji, R., Guo, Q. H., Li, Q., Zhang, H. L. and Zhou, Y. N. 2014. Celecoxib regulates apoptosis and autophagy via the PI3K/Akt signaling pathway in SGC-7901 gastric cancer cells. Int. J. Mol. Med. 33, 1451-1458. https://doi.org/10.3892/ijmm.2014.1713
  14. Mori, M., Hitora, T., Nakamura, O., Yamagami, Y., Horie, R., Nishimura, H. and Yamamoto, T. 2015. Hsp90 inhibitor induces autophagy and apoptosis in osteosarcoma cells. Int. J. Oncol. 46, 47-54. https://doi.org/10.3892/ijo.2014.2727
  15. Muller, P., Hrstka, R., Coomber, D., Lane, D. P. and Vojtesek, B. 2008. Chaperone-dependent stabilization and degradation of p53 mutants. Oncogene 27, 3371-3383. https://doi.org/10.1038/sj.onc.1211010
  16. Nazim, U. M. D., Moon, J. H., Lee, J. H., Lee, Y. J., Seol, J. W., Eo, S. K., Lee, J. H. and Park, S. Y. 2016. Activation of autophagy flux by metformin downregulates cellular FLICE-like inhibitory protein and enhances TRAIL-induced apoptosis. Oncotarget 7, 23468-23481.
  17. Neckers, L. and Workman, P. 2012. Hsp90 molecular chaperone inhibitors: Are we there yet? Clin. Cancer Res. 18, 64-76. https://doi.org/10.1158/1078-0432.CCR-11-1000
  18. Pan, Y. Z., Wang, X., Bai, H., Wang, C. B., Zhang, Q. and Xi, R. 2015. Autophagy in drug resistance of the multiple myeloma cell line RPMI8226 to doxorubicin. Genet. Mol. Res. 14, 5621-5629. https://doi.org/10.4238/2015.May.25.14
  19. Piper, P. W. and Millson, S. H. 2011. Mechanisms of resistance to Hsp90 inhibitor drugs: a complex mosaic emerges. Pharmaceuticals (Basel) 4, 1400-1422. https://doi.org/10.3390/ph4111400
  20. Shimizu, S., Kanaseki, T., Mizushima, N., Mizuta, T., Arakawa-Kobayashi, S., Thompson, C. B. and Tsujimoto, Y. 2004. Role of Bcl-2 family proteins in a non-apoptotic programmed cell death dependent on autophagy genes. Nat. Cell Biol. 6, 1221-1228. https://doi.org/10.1038/ncb1192
  21. Shimizu, S., Yoshida, T., Tsujioka, M. and Arakawa, S. 2014. Autophagic cell death and cancer. Int. J. Mol. Sci. 15, 3145-3153. https://doi.org/10.3390/ijms15023145
  22. Sui, X., Chen, R., Wang, Z., Huang, Z., Kong, N., Zhang, M., Han, W., Lou, F., Yang, J., Zhang, Q., Wang, X., He, C. and Pan, H. 2013. Autophagy and chemotherapy resistance: a promising therapeutic target for cancer treatment. Cell Death Dis. 4, e838. https://doi.org/10.1038/cddis.2013.350
  23. Takara, K., Hayashi, R., Kokufu, M., Yamamoto, K., Kitada, N., Ohnishi, N. and Yokoyama, T. 2009. Effects of nonsteroidal anti-inflammatory drugs on the expression and function of P-Glycoprotein/MDR1 in Caco-2 cells. Drug Chem. Toxicol. 32, 332-337. https://doi.org/10.1080/01480540903130658
  24. Wan, X. M., Zheng, F., Zhang, L., Miao, Y. Y., Man, N. and Wen, L. P. 2011. Autophagy-mediated chemosensitization by cysteamine in cancer cells. Int. J. Cancer 129, 1087-1095. https://doi.org/10.1002/ijc.25771
  25. Yoshii, S. R. and Mizushima, N. 2017. Monitoring and measuring autophagy. Int. J. Mol. Sci. 18, 1865. https://doi.org/10.3390/ijms18091865
  26. Yu, C., Li, W. B., Liu, J. B., Lu, J. W. and Feng, J. F. 2018. Autophagy: novel applications of nonsteroidal anti-inflammatory drugs for primary cancer. Cancer Med. 7, 471-484. https://doi.org/10.1002/cam4.1287