DOI QR코드

DOI QR Code

Analysis of Antioxidant Enzyme Activity During Seedling Growth of Leymus chinensis Trin Under Salt and Dehydration Stresses

고염과 건조 스트레스 처리 조건 동안 양초 유식물체의 항산화효소 활성 분석

  • Shim, Donghwan (Department of Forest Genetic Resources, National Institute of Forest Science) ;
  • Nam, Ki Jung (Department of Biology Education, IALS, Gyeongsang National University) ;
  • Kim, Yun-Hee (Department of Biology Education, IALS, Gyeongsang National University)
  • 심동환 (국립산림과학원 산림생명자원연구부) ;
  • 남기정 (국립경상대학교 생물교육과(농업생명과학연구원)) ;
  • 김윤희 (국립경상대학교 생물교육과(농업생명과학연구원))
  • Received : 2018.03.07
  • Accepted : 2018.06.14
  • Published : 2018.07.30

Abstract

To understand the adaptability of Leymus chinensis forage grass to environmental stresses, we analyzed the $H_2O_2$ scavenging activity based on several antioxidant enzymes and total phenolics content, including peroxidase (POD), ascorbate peroxidase (APX), and catalase (CAT), in shoots and roots subjected to salt and dehydration stresses during seedling growth. After NaCl or PEG treatment, plants showed reduced seedling growth under over 200 mM NaCl or 30% PEG treatment condition in shoots and roots compared with the control condition. In addition, plants showed high enzymatic activity of CAT in the shoots, whereas they exhibited high activity levels of APX and POD in the roots in both the NaCl and PEG treatment conditions. These results seem to indicate that Leymus chinensis seedlings responding to salt and dehydration stresses during initial growth is associated with enhanced activity of $H_2O_2$ scavenging antioxidant enzymes in the shoots or roots. The plants also showed high levels of total phenolics under NaCl treatment, with a high concentration in both the shoots and roots. Our results showed that the induced activity patterns of APX in the roots and CAT in the shoots indicate that low $H_2O_2$ levels were mainly maintained through tissue-specific redox homeostasis involving enzymes such as APX and CAT during salt and dehydration stresses. This study highlights the importance of antioxidant enzymes in the establishment of Leymus chinensis seedlings under high salinity conditions, such as typical desertification.

본 연구에서는 화본과 다년생 식물인 양초의 환경 스트레스에 대한 적응 기작을 이해하기 위해, 과산화수소를 제거하는 주요 항산화효소인 peroxidase (POD), ascorbate peroxidase (APX) 및 catalase (CAT) 활성의 변화를 고염과 건조 스트레스 조건에서 조사하였다. 300 mM 이상의 NaCl과 40% PEG 처리에서 양초 유식물체의 지상부와 지하부의 생장이 크게 감소하였다. 항산화효소 수준은 양초 유식물체의 지상부에서 CAT 활성이 높았지만, APX와 POD는 지하부에서 높은 활성 수준을 보였다. 실제로 NaCl과 PEG 처리동안 APX 활성은 지상부와 지하부가 모두 증가하였으며, CAT 활성은 지상부만 증가하였다. 또한 고염 조건에서 양초식물체의 지상부와 지하부 모두에서 전체페놀 함량이 증가하였다. 본 연구의 결과로서, 양초의 유식물체의 지상부 및 지하부의 생장이 과산화수소를 제거하는 항산화효소활성에 의해 조절됨을 알 수 있었으며, 이는 뿌리에서 APX 활성의 증가 및 지상부에서 CAT 활성증가와 같은 효소활성의 조직 특이적 증가에 영향을 받음을 알 수 있다. 본 연구의 결과는 전형적인 사막지역을 포함하는 고염 지역에서 양초 유식물체의 생장을 위해 항산화 방어기작이 중요함을 의미하는 바이다.

Keywords

References

  1. Aebi, H. 1984. Catalase in vitro. Methods. Enzymol. 105, 121-126.
  2. Allakhverdiev, S. I., Sakamoto, A., Nishiyama, Y., Inada, M. and Murata, N. 2000. Ionic and osmotic effects of NaCl-induced inactivation of photosystems I and II in Synechococcus sp. Plant Physiol. 123, 1047-1056. https://doi.org/10.1104/pp.123.3.1047
  3. Asada, K. 1999. The water-water cycle in chloroplasts: scavenging of active oxygen and dissipation of excess photons. Annu. Rev. Plant Physiol. Plant Mol. Biol. 50, 601-639 https://doi.org/10.1146/annurev.arplant.50.1.601
  4. Bartels, D. and Sunkar, R. 2005. Drought and salt tolerance in plants. Crit. Rev. Plant Sci. 24, 23-58. https://doi.org/10.1080/07352680590910410
  5. Bradford, M. M. 1976. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem. 72, 248-254. https://doi.org/10.1016/0003-2697(76)90527-3
  6. Cheong, M. S. and Yun, D. J. 2007. Salt-stress signaling. J. Plant Biol. 50, 148-155. https://doi.org/10.1007/BF03030623
  7. Jia, S. X. 1987. Forage flora in people republic of sinica. Beijing. China Agriculture Press, pp 19-35
  8. Jin, H., Plaha, P., Park, J. Y., Hong, C. P., Lee, I. S., Yang, Z. H., Jiang, G. B., Kwak, S. S., Liu, S. K., Lee, J. S., Kim, Y. A. and Lim, Y. P. 2006. Comparative EST profiles of leaf and root of Leymus chinensis, a xerophilous grass adapted to high pH sodic soil. Plant Sci. 170, 1081-1086. https://doi.org/10.1016/j.plantsci.2006.01.002
  9. Kwak, S. S., Kim, S. K., Lee, M. S., Jung, K. H., Park, I. H. and Liu, J. R. 1995. Acidic peroxidase from suspension-cultures of sweet potato. Phytochemistry 39, 981-984. https://doi.org/10.1016/0031-9422(95)00098-R
  10. Nakano, Y. and Asada, K. 1981. Hydrogen peroxide is scavenged by ascorbate-specific peroxidase in spinach chlor-oplasts. Plant Cell Physiol. 22, 867-880.
  11. Noctor, G. and Foyer, C. H. 1998. Ascorbate and glutathione: keeping active oxygen under control. Annu. Rev. Plant Physiol. Plant Mol. Biol. 49, 249-279. https://doi.org/10.1146/annurev.arplant.49.1.249
  12. Sgherri, C., Stevanovic, B. and Navari-Izzo, F.2004. Role of phenolics in the antioxidative status of the resirrection plant Ramonda serbica during dehydration and rehydration. Physiol. Plant 122, 478-485. https://doi.org/10.1111/j.1399-3054.2004.00428.x
  13. Singh, A. and Prasad, R. 2009. Salt stress effects growth and cell wall bound enzymes in Arachis hypogaea L. seedings. Int. J. Integr. Biol. 7, 117-123.
  14. Stadnik, M. J. and Buchenauer, H. 2000. Inhibition of phe nylalanine ammonia -lyase suppresses the resistance in- duced by benzothiadiazole in wheat to Blumeria graminis f. sp. tritici. Physiol. Mol. Plant Pathol. 57, 25-34. https://doi.org/10.1006/pmpp.2000.0276
  15. Sun, Y., Wang, F., Wang, N., Dong, Y., Liu, Q., Zhao, L., Chen, H., Liu, W., Yin, H., Zhang, X., Yuan, Y. and Li, H.2013. Transcriptome exploration in Leymus chinensis under saline-alkaline treatment using 454 pyrosequencing. PLoS One 8, e53632 https://doi.org/10.1371/journal.pone.0053632
  16. Wang, W. B., Kim, Y. H., Lee, H. S., Kim, K. Y., Deng, X. P. and Kwak, S. S. 2009. Analysis of antioxidant enzyme activity during germination of alfalfa under salt and drought stresses. Plant Physiol. Biochem. 47, 570-577. https://doi.org/10.1016/j.plaphy.2009.02.009