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SPECTRA ORIGINATED FROM FREDHOLM THEORY AND

BROWDER’S THEOREM

Mohamed Amouch, Mohammed Karmouni, and Abdelaziz Tajmouati

Abstract. We give a new characterization of Browder’s theorem through

equality between the pseudo B-Weyl spectrum and the generalized Drazin
spectrum. Also, we will give conditions under which pseudo B-Fredholm

and pseudo B-Weyl spectrum introduced in [9] and [25] become stable
under commuting Riesz perturbations.

1. Introduction and preliminaries

Throughout, X denotes a complex Banach space, B(X) the Banach algebra
of all bounded linear operators on X, let I be the identity operator, and for
T ∈ B(X) we denote by T ∗, R(T ), R∞(T ) =

⋂
n≥0R(Tn), ρ(T ), σ(T ), σp(T ),

σap(T ) and σsu(T ) respectively the adjoint, the range, the hyper-range, the re-
solvent set, the spectrum, the point spectrum, the approximate point spectrum
and the surjectivety spectrum of T .

An operator T ∈ B(X) is said to be semi-regular, if R(T ) is closed and
N(T ) ⊆ R∞(T ). For subspaces M , N of X we write M ⊆e N (M is essentially
contained in N) if there exists a finite-dimensional subspace F ⊂ X such that
M ⊆ N + F . T ∈ B(X) is said to be essentially semi-regular, if R(T ) is
closed and N(T ) ⊆e R∞(T ). The corresponding spectra are the semi-regular
spectrum σse(T ) and the essentially semi-regular spectrum σes(T ) defined by

σse(T ) = {λ ∈ C : T − λI is not semi-regular},
σes(T ) = {λ ∈ C : T − λI is not essentially semi-regular}, see [1].

Let E be a subset of X. E is said T -invariant if T (E) ⊆ E. We say that T
is completely reduced by the pair (E,F ) and we denote (E,F ) ∈ Red(T ) if E
and F are two closed T -invariant subspaces of X such that X = E⊕F . In this
case we write T = TpE⊕TpF and we say that T is the direct sum of TpE and TpF .
In the other hand, recall that an operator T ∈ B(X) admits a generalized Kato
decomposition, (GKD for short), if there exists (X1, X2) ∈ Red(T ) such that
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TpX1
is semi-regular and TpX2

is quasi-nilpotent, in this case T is said a pseudo
Fredholm operator. If we assume in the definition above that TpX2

is nilpotent,
then T is said to be of Kato type. Clearly, every semi-regular operator is of
Kato type and a quasi-nilpotent operator has a GKD, see [16, 18] for more
information about generalized Kato decomposition.

Recall that T ∈ B(X) is said to be quasi-Fredholm if there exists d ∈ N such
that

(1) R(Tn) ∩N(T ) = R(T d) ∩N(T ) for all n ≥ d;
(2) R(T d) ∩N(T ) and R(T ) +N(T d) are closed in X.

An operator is quasi-Fredholm if it is quasi-Fredholm of some degree d.
Note that semi-regular operators are quasi-Fredholm of degree 0 and by results
of Labrousse [16], in the case of Hilbert spaces, the set of quasi-Fredholm
operators coincides with the set of Kato type operators. For every bounded
operator T ∈ B(X), let us define the essential quasi-Fredholm spectrum and
generalized Kato spectrum respectively by:

σeq(T ) := {λ ∈ C : T − λI is not quasi-Fredholm};

σgK(T ) := {λ ∈ C : T−λI does not admit a generalized Kato decomposition}.
It is know that σgK(T ) is always a compact subsets of the complex plane
contained in the spectrum σ(T ) of T [12, Corollary 2.3]. Note that σgK(T )
is not necessarily non-empty. For example, all quasi-nilpotent operator has
an empty generalized Kato spectrum, see [12, 13] for more information about
σgK(T ).

A bounded linear operator is called an upper semi-Fredholm (resp, lower
semi Fredholm) if dimN(T ) <∞ and R(T ) is closed (resp, codimR(T ) <∞).
T is semi-Fredholm if it is a lower or upper semi-Fredholm operator. The
index of a semi-Fredholm operator T is defined by ind(T ) := dimN(T ) −
codimR(T ). Also, T is a Fredholm operator if it is a lower and upper semi-
Fredholm operator, and T is called a Weyl operator if it is a Fredholm of index
zero.

The essential and Weyl spectra of T are closed and defined by:

σe(T ) = {λ ∈ C : T − λI is not a Fredholm operator};

σW (T ) = {λ ∈ C : T − λI is not a Weyl operator}.
Recall that an operator R ∈ B(X) is said to be Riesz if R− µI is Fredholm

for every non-zero complex number µ. Of course compact and quasi-nilpotent
operators are particular cases of Riesz operators.

Let T ∈ B(X), the ascent of T is defined by a(T ) = min{p ∈ N : N(T p) =
N(T p+1)} if such p does not exist we let a(T ) = ∞. Analogously the descent
of T is d(T ) = min{q ∈ N : R(T q) = R(T q+1)} if such q does not exist we
let d(T ) = ∞ [23]. It is well known that if both a(T ) and d(T ) are finite,
then a(T ) = d(T ) and we have the decomposition X = R(T p)⊕N(T p) where
p = a(T ) = d(T ).
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An operator T ∈ B(X) is upper semi-Browder if T is upper semi-Fredholm
and a(T ) <∞. If T ∈ B(X) is lower semi-Fredholm and d(T ) <∞, then T is
lower semi-Browder. T is called a Browder operator if it is a lower and upper
Browder operator.

An operator T ∈ B(X) is said to be B-Fredholm if for some integer n ≥ 0
the range R(Tn) is closed and Tn, the restriction of T to R(Tn) is a Fredholm
operator. This class of operators, introduced and studied by Berkani et al. in
a series of papers extends the class of semi-Fredholm operators. T is said to be
a B-Weyl operator if Tn is a Fredholm operator of index zero. The B-Fredholm
and B-Weyl spectra are defined by

σBF (T ) = {λ ∈ C : T − λI is not B-Fredholm};
σBW (T ) = {λ ∈ C : T − λI is not B-Weyl}.

Note that T is a B-Fredholm operator if there exists (X1, X2) ∈ Red(T ) such
that TpX1

is Fredholm and TpX2
is nilpotent, see [8, Theorem 2.7]. Also, T is a

B-Weyl operator if and only if TpX1
is a Weyl operator and TpX2

is a nilpotent
operator.

More recently, B-Fredholm and B-Weyl operators were generalized to pseudo
B-Fredholm and pseudo B-Weyl, see [9,25], precisely, T is a pseudo B-Fredholm
operator, if there exists (X1, X2) ∈ Red(T ) such that TpX1

is a Fredholm op-
erator and TpX2

is a quasi-nilpotent operator. T is said to be pseudo B-Weyl
operator if there exists (X1, X2) ∈ Red(T ) such that TpX1

is a Weyl operator
and TpX2 is a quasi-nilpotent operator. The pseudo B-Fredholm and pseudo
B-Weyl spectra are defined by:

σpBF (T ) = {λ ∈ C : T − λI is not pseudo B-Fredholm};
σgDW(T ) = {λ ∈ C : T − λI is not pseudo B-Weyl}.

Let T ∈ B(X), T is said to be Drazin invertible if there exist a positive integer
k and an operator S ∈ B(X) such that

ST = TS, T k+1S = T k and S2T = S.

Which is also equivalent to the fact that T = T1 ⊕ T2; where T1 is invertible
and T2 is nilpotent. The Drazin spectrum is defined by

σD(T ) = {λ ∈ C : T − λI is not Drazin invertible}.
The concept of Drazin invertible operators has been generalized by Koliha
[14]. In fact, T ∈ B(X) is generalized Drazin invertible if and only if 0 /∈
acc(σ(T )), where acc(σ(T )) is the set of accumulation points of σ(T ). This is
also equivalent to the fact that there exists (X1, X2) ∈ Red(T ) such that TpX1

is invertible and TpX2
is quasi-nilpotent. The generalized Drazin spectrum is

defined by

σgD(T ) = {λ ∈ C : T − λI is not generalized Drazin invertible}.
The concept of analytical core for an operator has been introduced by Vrbova
in [24] and study by Mbekhta [18,19], that is the following set:
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K(T ) = {x ∈ X : ∃(xn)n≥0 ⊂ X and δ > 0 such that x0 = x, Txn =
xn−1 ∀n ≥ 1 and ‖xn‖ ≤ δn‖x‖}.

The quasi-nilpotent part of T , H0(T ) is given by:

H0(T ) := {x ∈ X; rT (x) = 0} where rT (x) = lim
n→+∞

||Tnx|| 1n .

In [11], M. D. Cvetković and SČ. Živković-Zlatanović introduced and studied
a new concept of generalized Drazin invertibility of bounded operators as a
generalization of generalized Drazin invertible operators. In fact, an operator
T ∈ B(X) is said to be generalized Drazin bounded below if H0(T ) is closed
and complemented with a subspace M in X such that (M,H0(T )) ∈ Red(T )
and T (M) is closed which is equivalent to there exists (M,N) ∈ Red(T ) such
that TpM is bounded below and TpN is quasi-nilpotent, see [11, Theorem 3.6].
An operator T ∈ B(X) is said to be generalized Drazin surjective if K(T ) is
closed and complemented with a subspace N in X such that N ⊆ H0(T ) and
(K(T ), N) ∈ Red(T ) which is equivalent to there exists (M,N) ∈ Red(T ) such
that TpM is surjective and TpN is quasi-nilpotent, see [11, Theorem 3.7].

The generalized Drazin bounded below and surjective spectra of T ∈ B(X)
are defined respectively by:

σgDM(T ) = {λ ∈ C, T − λI is not generalized Drazin bounded below};
σgDQ(T ) = {λ ∈ C, T − λI is not generalized Drazin surjective}.

From [11], we have:

σgD(T ) = σgDM(T ) ∪ σgDQ(T ).

As a continuation of works [5–7, 9, 11, 25], we will study various spectra
originated from Fredholm theory and related to Drazin spectrum. After given
preliminaries results, in the second section of this work, we characterize the
equality between the pseudo B-Weyl spectrum and generalized Drazin spectrum
by means of the Browder’s theorem. Also, we will give serval necessary and
sufficient conditions for T to have equality between the spectra originated from
Fredholm theory and Drazin invertibility. In the same direction as our work
[22], we will give conditions under which pseudo B-Fredholm and pseudo B-
Weyl spectrum are stable under commuting Riesz perturbations. In section
four, we will prove that we can perturb a pseudo B-Fredholm (resp. pseudo
Fredholm) operator T ∈ B(X) by a bounded operator S commuting with T to
obtain a Fredholm (resp. semi-regular operator) T + S.

2. On pseudo semi B-Fredholm (Weyl) operators

In the following, we introduce the definition of pseudo upper B-Fredholm,
pseudo lower B-Fredholm, generalized Drazin lower semi-Weyl, generalized
Drazin upper semi-Weyl and pseudo semi B-Fredholm operators.
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Definition 2.1 ([11]). An operator T ∈ B(X) is said to be pseudo upper
B-Fredholm if there exist two T -invariant closed subspaces X1 and X2 of X
such that X = X1 ⊕ X2 and TpX1 is upper semi-Fredholm operator and TpX2

is quasi-nilpotent. If ind(TpX1) ≤ 0, T is said to be generalized Drazin upper
semi-Weyl.

Definition 2.2 ([11]). An operator T ∈ B(X) is said to be pseudo lower
B-Fredholm if there exist two T -invariant closed subspaces X1 and X2 of X
such that X = X1 ⊕ X2 and TpX1

is lower semi-Fredholm operator and TpX2

is quasi-nilpotent. If ind(TpX1) ≤ 0, T is said to be generalized Drazin lower
semi-Weyl.

Definition 2.3. We say that T ∈ B(X) is pseudo semi B-Fredholm if T is
pseudo lower B-Fredholm or pseudo upper B-Fredholm.

It is clear that T is a pseudo B-Fredholm operator if and only if T is a pseudo
lower semi B-Fredholm operator and pseudo upper semi B-Fredholm operator.
In the same way T is pseudo B-Weyl if and only if T is generalized Drazin lower
semi-Weyl and generalized Drazin upper semi-Weyl. The generalized Drazin
lower semi-Weyl and generalized Drazin upper semi-Weyl spectra of T ∈ B(X)
are defined respectively by:

σgDW−(T ) = {λ ∈ C, T − λI is not generalized Drazin lower semi-Weyl};
σgDW+(T ) = {λ ∈ C, T − λI is not generalized Drazin upper semi-Weyl}.

From [11], we have:

σgDW(T ) = σgDW+(T ) ∪ σgDW−(T );

The pseudo upper and lower B-Fredholm spectra of T ∈ B(X) are defined
respectively by:

σpuBF (T ) = {λ ∈ C, T − λI is not pseudo upper B-Fredholm};
σplBF (T ) = {λ ∈ C, T − λI is not pseudo lower B-Fredholm}.

Also, from [11], we have:

σpBF (T ) = σpuBF (T ) ∪ σplBF (T ).

The following results gives some relationship between pseudo upper/lower
B-Fredholm operator in terms of generalized Drazin invertibility.

Proposition 2.1. Let T ∈ B(X). If there exists (N,F ) ∈ Red(T ) such that
codimF < ∞, dimN < ∞ and TpF is generalized Drazin bounded below, then
T is pseudo upper B-Fredholm.

Proof. If there exists (N,F ) ∈ Red(T ) such that codimF < ∞, dimN < ∞
and TpF is generalized Drazin bounded below, then X = F ⊕ N . Since TpF
is generalized Drazin bounded below, then there exist two closed T -invariant
subspaces F1 and F2 of F such that F = F1⊕F2, TpF1

is bounded below and TpF2

is quasi-nilpotent, then X = F1 ⊕ F2 ⊕N. Let M = F1 ⊕N , T (M) = T (F1) +
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T (N), since TpF1
is bounded below, then T (F1) is closed. Since dimN < ∞,

then T (M) is closed. Now we have

N(TpM ) = N(TpF1
)⊕N(TpN ) = N(TpN ) ⊆ N,

because TpF1 is bounded below. Therefore, TpM is upper Fredholm and TpF2 is
quasi-nilpotent. Thus T is pseudo upper B-Fredholm. �

Proposition 2.2. Let T ∈ B(X). If T is pseudo lower B-Fredholm, then there
exists F ⊆ X such that codimF <∞ and TpF is generalized Drazin surjective.

Conversely, If there exists (N,F ) ∈ Red(T ) such that codimF <∞, dimN
< ∞ and TpF is generalized Drazin surjective, then T is pseudo lower B-
Fredholm

Proof. If T is pseudo lower B-Fredholm, then there exist two closed T -invariant
subspaces X1 and X2 of X such that X = X1⊕X2 and T1 = TpX1

is lower semi-
Fredholm and T2 = TpX2

is quasi-nilpotent. Since T1 is lower semi-Fredholm,
then codimR(T1) < ∞, hence there exists N ⊆ X1 such that, dimN < ∞
and X1 = R(T1) ⊕ N. Thus, X = N ⊕ R(T1) ⊕ X2. Let F = R(T1) ⊕ X2,
then codimF < ∞ and TpR(T1) is surjective and T2 is quasi-nilpotent, so T is
generalized Drazin surjective.

Conversely, if there exists (N,F ) ∈ Red(T ) such that codimF <∞, dimN <
∞ and TpF is generalized Drazin surjective. Since TpF is generalized Drazin
surjective, then there exist two closed T -invariant subspaces F1 and F2 of F
such that F = F1 ⊕ F2 and TpF1

is surjective and TpF2
is quasi-nilpotent, then

X = F1 ⊕ F2 ⊕ N. Let M = F1 ⊕ N , since TpF1
is surjective, then TpF1

is
lower Fredholm. Since TpN is finite rank operator, so TpM = TpF1

⊕ TpN is lower
Fredholm. Therefore, TpF1

⊕ TpN is lower Fredholm and TpF2
is quasi-nilpotent.

So, T is pseudo lower B-Fredholm. �

Recall that T ∈ B(X) is said to have the single valued extension property at
λ0 ∈ C (SVEP for short) if for every open neighbourhood U ⊆ C of λ0, the only
analytic function f : U −→ X which satisfies the equation (T − zI)f(z) = 0
for all z ∈ U is the function f ≡ 0. An operator T is said to have the SVEP if
T has the SVEP for every λ ∈ C. Obviously, every operator T ∈ B(X) has the
SVEP at every λ ∈ ρ(T ) = C \ σ(T ), hence T and T ∗ have the SVEP at every
point of the boundary ∂(σ(T )) of the spectrum. Also, we have the implication

a(T ) <∞ =⇒ T has SVEP at 0,

d(T ) <∞ =⇒ T ∗ has SVEP at 0.

In [11], the authors gave some examples showing that σgDM(T ) ⊂ σgDW+(T ),
σgDQ(T ) ⊂ σgDW−(T ) and σgD(T ) ⊂ σgDW(T ) can be proper. In the following
results we give serval necessary and sufficient conditions for T to have equality.

Proposition 2.3. Let T ∈ B(X). Then σgDM(T ) = σgDW+(T ) if and only if
T has SVEP at every λ /∈ σgDW+(T ).
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Proof. Assume that T has SVEP at every λ /∈ σgDW+(T ). If λ /∈ σgDW+(T ),
then T −λI is generalized Drazin upper semi-Weyl, then there exists (M,N) ∈
Red(T ) such that (T −λI)|M is semi-regular and (T −λI)|N is quasi-nilpotent.
T has SVEP at every λ /∈ σgDW+(T ), it follows that (T −λI)|M has the SVEP
at 0, then (T − λI)|M is bounded below. Hence T − λI is generalized Drazin
bounded below, λ /∈ σgDM(T ), and since the reverse implication holds for every
operator we conclude that σgDM(T ) = σgDW+(T ). Conversely, suppose that
σgDM(T ) = σgDW+(T ). If λ /∈ σgDW+(T ), then T − λI is generalized Drazin
bounded below so H0(T − λI) is closed. By [3, Theorem 1.7], T has SVEP at
λ. �

We denote by σlB(T ) and σlW (T ) respectively the lower Browder and lower
Weyl spectra. In the same way we have the following result.

Proposition 2.4. Let T ∈ B(X). Then σgDQ(T ) = σgDW−(T ) if and only if
T ∗ has SVEP at every λ /∈ σgDW−(T ).

Proof. Suppose that T has SVEP at every λ /∈ σgDW−(T ). If λ /∈ σgDW−(T ),
then by [11, Theorem 3.7], T − λI admits GKD and λ /∈ accσlW (T ). T ∗ has
SVEP at every λ /∈ σgDW−(T ), then T ∗ has SVEP at every λ /∈ σlW (T ), and so
σlB(T ) = σlW (T ). Then λ /∈ accσlB(T ). Therefore, T−λI is generalized Drazin
surjective according to [11, Theorem 3.7], λ /∈ σgDQ(T ) and since the reverse
implication holds for every operator we conclude that σgDQ(T ) = σgDW−(T ).
Conversely, suppose that σgDQ(T ) = σgDW−(T ). If λ /∈ σgDW−(T ), then T−λI
is generalized Drazin surjective then K(T − λI) is closed and complemented
with a subspace N in X such that N ⊆ H0(T − λI) and (K(T − λI), N) ∈
Red(T − λI), so K(T − λ) + H0(T − λ) = X. From [3, Theorem 1.7], T ∗ has
the SVEP at λ. �

As a consequence of the two previous results we have the following proposi-
tion.

Proposition 2.5. Let T ∈ B(X). Then σgD(T ) = σgDW(T ) if and only if T
and T ∗ have the SVEP at every λ /∈ σgDW(T )

A bounded linear operator T is said to satisfy Browder’s theorem if σW (T ) =
σB(T ), or equivalently accσ(T ) ⊆ σW (T ), where σB(T ) is the Browder spec-
trum of T .

It is known from [2] that a-Browder’s theorem holds for T if σuW (T ) =
σuB(T ), or equivalently accσap(T ) ⊆ σuW (T ), where σuB(T ) and σuW (T ) are
the upper semi-Browder and upper semi-Weyl spectra of T .

The following result shows that Browder’s (a-Browder’s) theorem holds for
T precisely when σgD(T ) = σgDW(T ) (σgDM(T ) = σgDW+(T )), which give
new characterizations for Browder’s and a-Browder’s theorems.

Theorem 2.1. Let T ∈ B(X). Then
1) a-Browder’s theorem holds for T if and only if σgDM(T ) = σgDW+(T ).
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2) a-Browder’s theorem holds for T ∗ if and only if σgDQ(T ) = σgDW−(T ).
3) Browder’s theorem holds for T if and only if σgD(T ) = σgDW(T ).

Proof. 1) Suppose that a-Browder’s theorem holds for T implies σuB(T ) =
σuW (T ).

Using [11, Theorems 3.4 and 3.6], we conclude that

λ /∈ σgDM(T ) ⇐⇒ T − λI is generalized Drazin bounded below

⇐⇒ T − λI admits a GKD and λ /∈ accσuB(T )

⇐⇒ T − λI admits a GKD and λ /∈ accσuW (T )

⇐⇒ T − λI is generalized Drazin upper semi-Weyl

⇐⇒ λ /∈ σgDW+(T ).

Hence σgDM(T ) = σgDW+(T ). Conversely, if σgDM(T ) = σgDW+(T ), from
Proposition 2.3, T has SVEP at every λ /∈ σgDW+(T ). Since σgDW+(T ) ⊆
σuW (T ), T has SVEP at every λ /∈ σuW (T ), so a-Browder’s theorem holds for
T , see [2, Theorem 4.34].

2) Suppose that a-Browder’s theorem holds for T ∗ then σlB(T ) = σlW (T ).
Using [11, Theorems 3.4 and 3.7] we have

λ /∈ σgDQ(T ) ⇐⇒ T − λI is generalized Drazin surjective

⇐⇒ T − λI admits a GKD and λ /∈ accσlB(T )

⇐⇒ T − λI admits a GKD and λ /∈ accσlW (T )

⇐⇒ T − λI is generalized Drazin lower semi-Weyl

⇐⇒ λ /∈ σgDW−(T ).

Hence σgDQ(T ) = σgDW−(T ). Conversely, if σgDQ(T ) = σgDW−(T ), from
Proposition 2.4, T ∗ has SVEP at every λ /∈ σgDW−(T ). Since σgDW−(T ) ⊆
σlW (T ), T ∗ has SVEP at every λ /∈ σlW (T ), so a-Browder’s theorem holds for
T ∗, see [2, Theorem 4.34].

3) Suppose that Browder’s theorem holds for T then σB(T ) = σW (T ).
Using [11, Theorems 3.4 and 3.9] we have

λ /∈ σgD(T ) ⇐⇒ T − λI is generalized Drazin invertible

⇐⇒ T − λI admits a GKD and λ /∈ accσB(T )

⇐⇒ T − λI admits a GKD and λ /∈ accσW (T )

⇐⇒ T − λI is generalized Drazin Weyl

⇐⇒ λ /∈ σgDW(T ).

Hence σgD(T ) = σgDW(T ). Conversely, if σgD(T ) = σgDW(T ), from Proposi-
tion 2.5, T and T ∗ has SVEP at every λ /∈ σgDW(T ). Since σgDW(T ) ⊆ σW (T ),
T has SVEP at every λ /∈ σW (T ), so Browder’s theorem holds for T , see [2, The-
orem 4.23]. �

It will be said that generalized Browder’s theorem holds for T ∈ B(X) if
σBW (T ) = σ(T )\Π(T ), equivalently, σBW (T ) = σD(T ), where Π(T ) is the set
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of all poles of the resolvent of T ([4]). A classical result of the second author
and H. Zguitti [6, Theorem 2.1] shows that Browder’s theorem and generalized
Browder’s theorem are equivalent. According to the previous results and the
equivalent between Browder’s theorem and generalized Browder’s theorem [6,
Theorem 2.1] we have the following theorem.

Theorem 2.2. Let T ∈ B(X). The statements are equivalent:
1) Browder’s theorem holds for T ;
2) generalized Browder’s theorem holds for T ;
3) T and T ∗ have SVEP at every λ /∈ σgDW(T );
4) σgD(T ) = σgDW(T ).

In the same way we have the following result.

Theorem 2.3. Let T ∈ B(X). The statements are equivalent:
1) a-Browder’s theorem holds for T ;
2) generalized a-Browder’s theorem holds for T ;
3) T has SVEP at every λ /∈ σgDW+(T );
4) σgDM(T ) = σgDW+(T ).

We denote by σlf (T ) and σuf (T ), T ∈ B(X), respectively the lower and upper
semi-Fredholm spectra. Concerning the pseudo upper/lower B-Fredholm spec-
trum and the generalized Drazin bounded below/surjective spectrum, we have
the following characterization. Note that σpuBF (T ) ⊂ σgDM(T ), σplBF (T )
⊂ σgDQ(T ) and σpBF (T ) ⊂ σgD(T ) are strict [11].

Theorem 2.4. Let T ∈ B(X). The statements are equivalent:
1) σuf (T ) = σuB(T );
2) T has SVEP at every λ /∈ σuf (T );
3) T has SVEP at every λ /∈ σpuBF (T );
4) σgDM(T ) = σpuBF (T ).

Proof. 1) ⇐⇒ 2): Suppose that T has SVEP at every λ /∈ σuf (T ). If λ /∈
σuf (T ), T−λI is upper semi-Fredholm. T has SVEP at λ, then a(T−λI) <∞,
see [1, Theorem 3.16]. So λ /∈ σuB(T ). Now, suppose that σuf (T ) = σuB(T ).
Let λ /∈ σuf (T ), λ /∈ σuB(T ) then a(T − λI) <∞, hence T has SVEP at λ by
[1].

3) ⇐⇒ 4): Suppose that T has SVEP at every λ /∈ σpuBF (T ). If λ /∈
σpuBF (T ), T − λI is pseudo upper B-Fredholm, then there exists (M,N) ∈
Red(T ) such that (T −λI)|M is semi-regular and (T −λI)|N is quasinilpotent.
T has SVEP at every λ /∈ σpuBF (T ) implies (T − λI)|M has the SVEP at 0, it
follows that (T − λI)|M is bounded below. Hence T − λI is generalized Drazin
bounded below, λ /∈ σgDM(T ), and since the reverse implication holds for
every operator we conclude that σgDM(T ) = σpuBF (T ). Conversely, assume
that σgDM(T ) = σpuBF (T ). If λ /∈ σpuBF (T ), then T−λI is generalized Drazin
bounded below so H0(T − λI) is closed. By [3, Theorem 1.7], T has the SVEP
at λ.
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1)⇐⇒ 4): Suppose that σuf (T ) = σuB(T ).
According to [11, Theorems 3.4 and 3.6] we have

λ /∈ σgDM(T ) ⇐⇒ T − λI is generalized Drazin bounded below

⇐⇒ T − λI admits a GKD and λ /∈ accσuB(T )

⇐⇒ T − λI admits a GKD and λ /∈ accσuf (T )

⇐⇒ T − λI is pseudo upper B-Fredholm

⇐⇒ λ /∈ σpuBF (T ).

Hence σgDM(T ) = σpuBF (T ). Conversely, if σgDM(T ) = σpuBF (T ), then by
3)⇐⇒ 4), T has SVEP at every λ /∈ σpuBF (T ). Since σpuBF (T ) ⊆ σuf (T ), T
has SVEP at every λ /∈ σuf (T ), 1)⇐⇒ 2) gives the result. �

Theorem 2.5. Let T ∈ B(X). The statements are equivalent:
1) σlf (T ) = σlB(T );
2) T ∗ has SVEP at every λ /∈ σlf (T );
3) T ∗ has SVEP at every λ /∈ σplBF (T );
4) σgDQ(T ) = σplBF (T ).

Proof. 1) ⇐⇒ 2): Suppose that T ∗ has SVEP at every λ /∈ σlf (T ). λ /∈
σlf (T ) implies that T − λI is lower semi-Fredholm. T ∗ has SVEP at λ, then
d(T − λI) < ∞, see [1, Theorem 3.17]. So λ /∈ σlB(T ). Now, Suppose that
σlf (T ) = σlB(T ). Let λ /∈ σlf (T ), λ /∈ σlB(T ) then d(T − λI) < ∞, hence T ∗

has SVEP at λ by [1].
3) ⇐⇒ 4): Suppose that T ∗ has SVEP at every λ /∈ σplBF (T ). If λ /∈

σplBF (T ), T−λI admits GKD and λ /∈ accσlf (T ) by [11, Theorem 3.4]. T ∗ has
SVEP at every λ /∈ σplBF (T ), it follows that T ∗ has SVEP at every λ /∈ σlf (T ),
then σlB(T ) = σlf (T ) so λ /∈ accσlB(T ). Therefore, T−λI is generalized Drazin
surjective [11, Theorem 3.7], λ /∈ σgDQ(T ) and since the reverse implication
holds for every operator we conclude that σgDQ(T ) = σplBF (T ). Conversely,
suppose that σgDQ(T ) = σplBF (T ), if λ /∈ σplBF (T ), then T −λI is generalized
Drazin surjective then K(T −λI) is closed and complemented with a subspace
N in X such that N ⊆ H0(T − λI) and (K(T − λI), N) ∈ Red(T − λI), so
K(T − λI) +H0(T − λI) = X. From [3, Theorem 1.7], T ∗ has SVEP at λ.

1)⇐⇒ 4): Suppose that σlf (T ) = σlB(T ).
According to [11, Theorems 3.4 and 3.7] we have

λ /∈ σgDQ(T ) ⇐⇒ T − λI is generalized Drazin surjective

⇐⇒ T − λI admits a GKD and λ /∈ accσlB(T )

⇐⇒ T − λI admits a GKD and λ /∈ accσlf (T )

⇐⇒ T − λI is pseudo lower B-Fredholm

⇐⇒ λ /∈ σplBF (T ).
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Hence σgDQ(T ) = σplBF (T ). Conversely, if σgDQ(T ) = σplBF (T ), by 3) ⇐⇒
4), T ∗ has SVEP at every λ /∈ σplBF (T ). Since σplBF (T ) ⊆ σlf (T ), T has
SVEP at every λ /∈ σlf (T ), according to 1)⇐⇒ 2) we obtain the result. �

As a direct consequence of Theorem 2.4 and Theorem 2.5 we have the fol-
lowing corollary.

Corollary 2.1. Let T ∈ B(X). The statements are equivalent:
1) σe(T ) = σB(T );
2) T and T ∗ have SVEP at every λ /∈ σe(T );
3) T and T ∗ have SVEP at every λ /∈ σBF (T );
4) σBF (T ) = σD(T );
5) T and T ∗ have SVEP at every λ /∈ σpBF (T );
6) σgD(T ) = σpBF (T ).

3. Perturbations

Now, we consider the classes of operators introduced in [11]:

gDR := {T ∈ B(X); there exists (M,N) ∈ Red(T ) such that

T|M ∈ R and T|N is quasinilpotent}.

DR := {T ∈ B(X); there exists (M,N) ∈ Red(T ) such that

T|M ∈ R and T|N is nilpotent}.

Where R denote any of the following classes: bounded below/surjective opera-
tors, upper(lower) semi-Fredholm operators, Fredholm operator, upper(lower)
semi-Weyl operators.

Proposition 3.1. Let T ∈ B(X). If T ∈ gDR, then there exists α > 0 such
that for every S ∈ B(X) invertible operator satisfying ST = TS and ||S|| < α,
we have T − S ∈ DR.

Proof. If T ∈ gDR, then T admits a GKD and 0 ∈ accσR(T ), see ([11]). From
[10, Theorem 2.1] T − S is semi-regular, and since accσR(T − S) = accσR(T ),
σR(T ) the spectrum associated to the class R, then T is of Kato type and
0 ∈ accσR(T − S). According to [11, Theorem 4.1], T − S ∈ DR. �

Let F(X) denote the ideal of finite rank operators on X. A bounded linear
operator F ∈ B(X) is power finite rank if Fn ∈ F(X) for some n ∈ N. In
what follow, we will prove that pseudo B-Weyl operators satisfying Browder’s
theorem is stable by power finite rank perturbations.

Proposition 3.2. Let T ∈ B(X), Fn ∈ F(X) for some n ∈ N commutes with
T . Then:

(1) If T satisfy Browder theorem, then σgDW(T + F ) = σgDW(T );
(2) If T and T ∗ have SVEP at every λ /∈ σe(T ), then σpBF (T + F ) =

σpBF (T ).
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Proof. (1) According to [26, Theorem 2.2], we have acc(σ(T )) = acc(σ(T+F )).
Then λ ∈ σgD(T ) if and only if λ ∈ acc(σ(T )) if and only if λ ∈ acc(σ(T +F ))
if and only if λ ∈ σgD(T + F ). So σgD(T + F ) = σgD(T ). Theorem 2.1 and
Corollary 2.1 give the result. �

By the same argument we have the following proposition.

Proposition 3.3. Let T ∈ B(X) satisfy Browder theorem, Q a quasi-nilpotent
operator commutes with T . Then:

(1) If T satisfy Browder theorem, then σgDW(T +Q) = σgDW(T );
(2) If T and T ∗ have SVEP at every λ /∈ σe(T ), then σpBF (T + Q) =

σpBF (T ).

Proof. Since σgD(T + Q) = σgD(T ), from Theorem 2.1 and Corollary 2.1 we
have the result. �

Remark 1. Let T ∈ B(X), we have σpBF (T ) ⊂ σe(T ), σgDW(T ) ⊂ σW (T ) and
σgD(T ) ⊂ σD(T ) but generally these inclusions are proper. Indeed, let T and
S defined on l2(N) by

T (x1, x2, x3, . . .) = (
1

2
x2,

1

3
x3, . . .); S(x1, x2, x3, . . .) = (0,

1

2
x1, 0, 0, . . .).

Then T is quasi-nilpotent with infinite ascent and hence

σgD(T ) = ∅ but σD(T ) = {0}.
Furthermore,

σpBF (S) = σgDW(S) = ∅ but σe(S) = σW (S) = {0}.

The following lemma, will be needed in the sequel to study Riesz perturba-
tions.

Lemma 3.1. Let T ∈ B(X).

(1) σD(T ) = σgD(T ) ∪ iso(σD(T ));
(2) σ(T ) = σgD(T ) ∪ iso(σ(T ));
(3) σse(T ) = σgK(T ) ∪ iso(σse(T ));
(4) σes(T ) = σgK(T ) ∪ iso(σes(T ));
(5) σe(T ) = σpBF (T ) ∪ iso(σe(T ));
(6) σW (T ) = σgDW(T ) ∪ iso(σW (T )).

Proof. (1) Let λ ∈ σD(T )\σgD(T ), then T −λ is a generalized Drazin operator
hence there exists an ε > 0 such that T − µ is Drazin invertible for all µ ∈
D(λ, ε)\{λ}. Indeed, if T −λ is a generalized Drazin operator, then there exist
two closed T -invariant subspaces X1 and X2 of X such that X = X1⊕X2 and
T −λ = (T −λ)pX1

⊕ (T −λ)pX2
where (T −λ)pX1

is invertible and (T −λ)pX2
is

quasi-nilpotent. If X1 = {0}, T −λ is quasi-nilpotent, then for all µ 6= λ, T −µ
is invertible, hence T − µ is Drazin invertible. If X1 6= {0}, then (T − λ)pX1

is invertible, hence there exists ε > 0 such that (T − µ)pX1
is invertible for all

µ ∈ D(λ, ε), hence T−µ is Drazin invertible for all µ ∈ D(λ, ε). As (T−λ)pX2
is
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quasi-nilpotent, then for all µ 6= λ (T −µ)pX2
is invertible and hence (T −µ)pX2

is Drazin invertible for all µ ∈ D(λ, ε) \ {λ}. Since (T − µ)pX2
and (T − µ)pX1

are Drazin invertible for all µ ∈ D(λ, ε) \ {λ}, then we get T − µ is Drazin
invertible for all µ ∈ D(λ, ε) \ {λ}. This implies that

D(λ, ε) \ {λ} ∩ σD(T ) = ∅,
hence λ ∈ iso(σD(T )). Therefore,

σD(T ) ⊆ σgD(T ) ∪ iso(σD(T )).

The reverse inclusion is always true.
The assertion (2) is clear, since σgD(T ) = accσ(T ).
For (3), let λ ∈ σse(T ) \ σgK(T ), T − λ is a pseudo Fredholm operator.

By [12, Theorem 2.2], there exists an ε > 0 such that T − µ is semi-regular
for all µ ∈ D(λ, ε) \ {λ}, this implies that D(λ, ε) \ {λ} ∩ σse(T ) = ∅, hence
λ ∈ iso(σse(T )). Therefore, σse(T ) ⊆ σgK(T ) ∪ iso(σse(T )), the opposite
inclusion is always true.

To prove (4), let λ ∈ σes(T ) \σgK(T ), T −λ is a pseudo Fredholm operator.
By [12, Theorem 2.2], there exists an ε > 0 such that T−µ is semi-regular for all
µ ∈ D(λ, ε)\{λ}, hence T−µ is essentially semi-regular for all µ ∈ D(λ, ε)\{λ},
this implies that D(λ, ε) \ {λ} ∩ σes(T ) = ∅, thus λ ∈ iso(σse(T )). Therefore,
σes(T ) ⊆ σgK(T ) ∪ iso(σes(T )), since σgK(T ) ⊆ σes(T ), we have

σes(T ) = σgK(T ) ∪ iso(σes(T )).

For the assertion (5), let λ ∈ σe(T ) \ σpBF (T ), then T − λ is a pseudo B-
Freholm operator, hence there exists an ε > 0 such that T − µ is Fredholm
for all µ ∈ D(λ, ε) \ {λ}. Indeed, without loss of generality we can assume
that λ = 0. If T is pseudo B-Fredholm, then there exist two closed T -invariant
subspaces X1 and X2 such that X = X1⊕X2; TpX1 is Fredholm, TpX2 is quasi-
nilpotent and T = TpX1 ⊕ TpX2 .

If X1 = {0}, T is quasi-nilpotent, hence µI − T is invertible for all µ 6= 0,
that is µI − T is Fredholm for all µ 6= 0.

If X1 6= {0}, then TpX1
is Fredholm, hence there exists ε > 0 such that

(µI − T )pX1 is Fredholm for all µ ∈ D(0, ε). As TpX2 is quasi-nilpotent, then
for all µ 6= 0, (µI − T )pX2 is invertible, then (µI − T )pX2 is Fredholm for
all µ ∈ D∗(0, ε). Since (µI − T )pX2

and (µI − T )pX1
are Fredholm for all

µ ∈ D∗(0, ε), we have µI − T is Fredholm for all µ ∈ D∗(0, ε).
This implies that D(λ, ε)\{λ}∩σe(T ) = ∅, hence λ ∈ iso(σe(T )). Therefore,

σe(T ) ⊆ σpBF (T ) ∪ iso(σe(T )).

Since the opposite inclusion is true, then we conclude (5).
By a similar argument as in (5), we can prove (6). �

Theorem 3.1. Let T ∈ B(X) and R ∈ B(X) be a Riesz operator which com-
mutes with T . Then the following statements hold:

(1) If iso(σe(T )) = ∅, then σpBF (T +R) = σpBF (T );
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(2) If iso(σW (T )) = ∅, then σgDW(T +R) = σgDW(T ).

Proof. To prove (1), we have σe(T + R) = σe(T ) and since iso(σe(T )) = ∅,
then by Lemma 3.1, we get σpBF (T ) = σe(T ), hence σpBF (T +R) = σpBF (T ).
For the assertion (2), we have σW (T +R) = σW (T ) and since iso(σW (T )) = ∅,
then by Lemma 3.1, we have σgDW(T ) = σW (T ), hence σgDW(T + R) =
σpBW (T ). �

Note that the essential quasi-Fredholm spectrum is not stable under com-
muting quasi-nilpotent and compact perturbations, hence it is not stable under
commuting Riesz perturbation, see [20].

Theorem 3.2. Let T ∈ B(X).

(1) If iso(σes(T )) = ∅ and R is a Riesz operator such that TR = RT, then

σgK(T +R) = σgK(T ) and σeq(T +R) = σeq(T ).

(2) If iso(σse(T )) = ∅ and Q is a quasi-nilpotent operator such that QT =
TQ, then

σgK(T +Q) = σgK(T ) and σeq(T +Q) = σeq(T ).

Proof. To prove (1), since σgK(T ) ⊆ σeq(T ) ⊆ σes(T ), then by part (4) of
Lemma 3.1, we have

σeq(T ) ∪ iso(σes(T )) = σes(T ).

According to [15, Corollary 17], if R is a Riesz operator commutes with T , then
we have σes(T +R) = σes(T ). By hypothesis iso(σes(T )) = ∅, σes(T ) = σeq(T )
and by Lemma 3.1, we have σes(T ) = σgK(T ). This gives the result.

To prove (2), from [20], if Q is a quasi-nilpotent operator, then we have
σse(T +Q) = σse(T ). By hypothesis iso(σse(T )) = ∅, hence by Lemma 3.1, we
have that σse(T ) = σgK(T ). This gives the result. �

Example 1. Let T be an unilateral weighted right shift on lp(N), 1 ≤ p <∞,
with weight sequence (wn)n∈N. If limn→∞ inf(w1 · · ·wn)1/n = 0, then T and
T ∗ have the SVEP and by [1, Corollary 3.118]:

σsu(T ) = σap(T ) = σse(T ) = σe(T ) = σW (T ) = σ(T ) = D(0, r(T )),

where D(0, r(T )) the closed disc, hence iso(σ(T )) = iso(σW (T )) = iso(σe(T ))
= ∅. If R is a Riesz operator which commutes with T and Q a quasi-nilpotent
operator commutes with T , then:

σgK(T +Q) = σgK(T ); σpBF (T +R) = σpBF (T ); σpBW (T +R) = σpBW (T ).

4. Commutator and pseudo B-Fredholm perturbations

Let T, S ∈ B(X), denote by [T, S] the commutator of T and S.
In what follows, we prove that we can perturb a pseudo B-Fredholm operator

T ∈ B(X) by a bounded operator S satisfying [T, S] = 0 to obtain a Fredholm
operator T + S.
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Proposition 4.1. Let T ∈ B(X) be a pseudo B-Fredholm operator. Then there
exists S ∈ B(X) such that:

T + S is Fredholm, TS is quasi-nilpotent and [T, S] = 0.

Proof. If T is pseudo B-Fredholm, then there exist two closed T -invariant sub-
spaces X1 and X2 of X such that X = X1 ⊕X2 and T1 = TpX1 is upper semi-
Fredholm and T2 = TpX2 is quasi-nilpotent. Let S = 0 ⊕ (I2 − T2), I2 = I|X2

.
Since T1 is Fredholm, then T + S = T1 ⊕ I2 is a Fredholm operator. We have:

TS = [T1 ⊕ T2][0⊕ (I2 − T2)]

= T2(I2 − T2) = (I2 − T2)T2

= [0⊕ (I2 − T2)][T1 ⊕ T2] = ST.

From the well known spectral radius formula

r(TS) = r((I2 − T2)T2) ≤ r(I2 − T2)r(T2) = 0.

Therefore TS is quasinilpotent. �

In what follows, we prove that we can perturb a pseudo Fredholm operator
T ∈ B(X) by a bounded operator S satisfying [T, S] = 0 to obtain a semi-
regular operator T + S.

Proposition 4.2. Let T ∈ B(X) be a pseudo Fredholm operator. Then there
exists S ∈ B(X) such that:

T + S is semi-regular, TS is quasi-nilpotent and [T, S] = 0.

Proof. Since T is a pseudo Fredholm operator then there exist subsets M and
N of X such that

X = M ⊕N and T = T1 ⊕ T2

with T1 = T|M is a semi-regular operator and T2 = T|N is quasi-nilpotent. Let
S = 0⊕ (I2 − T2), I2 = I|N . Since T1 is semi-regular then T + S = T1 ⊕ I2 is a
semi-regular operator. We have:

TS = [T1 ⊕ T2][0⊕ (I2 − T2)]

= T2(I2 − T2) = (I2 − T2)T2

= [0⊕ (I2 − T2)][T1 ⊕ T2] = ST. �

In the following, we give a generalization of [21, Theorem 2.1] and [17, Propo-
sition 1.1].

Theorem 4.1. Let T ∈ B(X) be a pseudo B-Weyl operator. Then there exists
an operator F ∈ B(X) such that T + λF is invertible for all λ ∈ C \ {0} and

[T, F ]q(T, F )[T, F ] = 0.

Where q(T, F ) is any polynomial in T and F .
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Proof. T is a pseudo B-Weyl operator, then there exist two closed T -invariant
subspaces X1 and X2 of X such that X = X1⊕X2 and T1 = TpX1

is pseudo B-
Weyl and T2 = TpX2 is quasi-nilpotent. Since T1 is a Weyl operator ind(T1) = 0,
according to [21, Theorem 1.2], there exists F1 ∈ B(M) such that T1 + λF1 is
invertible and [T1, F1]q(T1, F1)[T1, F1] = 0, where q(T1, F1) is any polynomial
in T1 and F1. Set F = F1 ⊕ I2 where I2 is the restriction of I to X2. T2
is quasi-nilpotent this implies that T2 + λI2 is invertible for all λ 6= 0, hence
T + λF = T2 ⊕ T2 + λ(F1 ⊕ I2) = (T1 + λF1) ⊕ (T2 + λI2) is invertible.
On the other hand, [T2, I2] = 0 and [T1, F1]q(T1, F1)[T1, F1] = 0 therefore
[T, F ]q(T, F )[T, F ] = 0 where q(T, F ) is any polynomial in T and F . �
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