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SPECTRA ORIGINATED FROM FREDHOLM THEORY AND
BROWDER’S THEOREM

MOHAMED AMOUCH, MOHAMMED KARMOUNI, AND ABDELAZIZ TAIJMOUATI

ABSTRACT. We give a new characterization of Browder’s theorem through
equality between the pseudo B-Weyl spectrum and the generalized Drazin
spectrum. Also, we will give conditions under which pseudo B-Fredholm
and pseudo B-Weyl spectrum introduced in [9] and [25] become stable
under commuting Riesz perturbations.

1. Introduction and preliminaries

Throughout, X denotes a complex Banach space, B(X) the Banach algebra
of all bounded linear operators on X, let I be the identity operator, and for
T € B(X) we denote by T*, R(T), R®(T) = (,,>o R(T"), p(T), o(T), o,(T),
0ap(T) and o4, (T) respectively the adjoint, the range, the hyper-range, the re-
solvent set, the spectrum, the point spectrum, the approximate point spectrum
and the surjectivety spectrum of T'.

An operator T € B(X) is said to be semi-regular, if R(T) is closed and
N(T) C R>(T). For subspaces M, N of X we write M C°¢ N (M is essentially
contained in N) if there exists a finite-dimensional subspace F' C X such that
M C N+ F. T € B(X) is said to be essentially semi-regular, if R(T) is
closed and N(T) C¢ R*>®(T). The corresponding spectra are the semi-regular
spectrum o4 (7)) and the essentially semi-regular spectrum o.(7T") defined by

0se(T) = {A € C: T — Al is not semi-regular},
0es(T) = {A € C: T — Al is not essentially semi-regular}, see [1].
Let E be a subset of X. F is said T-invariant if T(F) C E. We say that T
is completely reduced by the pair (E, F') and we denote (E, F) € Red(T) if E
and F' are two closed T-invariant subspaces of X such that X = E® F. In this
case we write T' = T, BT, and we say that T is the direct sum of T,z and T .

In the other hand, recall that an operator T' € B(X) admits a generalized Kato
decomposition, (GKD for short), if there exists (X, X2) € Red(T') such that
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T x, is semi-regular and 7)x, is quasi-nilpotent, in this case T is said a pseudo
Fredholm operator. If we assume in the definition above that 7|x, is nilpotent,
then T is said to be of Kato type. Clearly, every semi-regular operator is of
Kato type and a quasi-nilpotent operator has a GKD, see [16, 18] for more
information about generalized Kato decomposition.

Recall that T' € B(X) is said to be quasi-Fredholm if there exists d € N such
that

(1) R(T")NN(T) = R(TY) N N(T) for all n > d;
(2) R(TY)N N(T) and R(T) 4+ N(T?) are closed in X.

An operator is quasi-Fredholm if it is quasi-Fredholm of some degree d.
Note that semi-regular operators are quasi-Fredholm of degree 0 and by results
of Labrousse [16], in the case of Hilbert spaces, the set of quasi-Fredholm
operators coincides with the set of Kato type operators. For every bounded
operator T' € B(X), let us define the essential quasi-Fredholm spectrum and
generalized Kato spectrum respectively by:

0eq(T) :=={A € C: T — A is not quasi-Fredholm};
o9k (T) := {\ € C: T—\I does not admit a generalized Kato decomposition}.

It is know that ogx(T') is always a compact subsets of the complex plane
contained in the spectrum o(7") of T' [12, Corollary 2.3]. Note that oy (T')
is not necessarily non-empty. For example, all quasi-nilpotent operator has
an empty generalized Kato spectrum, see [12,13] for more information about
OgK (T)

A bounded linear operator is called an upper semi-Fredholm (resp, lower
semi Fredholm) if dim N(T") < oo and R(T) is closed (resp, codimR(T") < 00).
T is semi-Fredholm if it is a lower or upper semi-Fredholm operator. The
index of a semi-Fredholm operator T is defined by ind(T) := dim N(T) —
codimR(T). Also, T is a Fredholm operator if it is a lower and upper semi-
Fredholm operator, and T is called a Weyl operator if it is a Fredholm of index
Zero.

The essential and Weyl spectra of T' are closed and defined by:

0.(T)={A € C: T — Al is not a Fredholm operator};

ow(T) ={X € C:T — Al is not a Weyl operator}.

Recall that an operator R € B(X) is said to be Riesz if R — uI is Fredholm
for every non-zero complex number p. Of course compact and quasi-nilpotent
operators are particular cases of Riesz operators.

Let T € B(X), the ascent of T is defined by a(T) = min{p € N: N(T?) =
N (TP} if such p does not exist we let a(T) = co. Analogously the descent
of T is d(T) = min{q € N : R(T?) = R(T%1)} if such ¢ does not exist we
let d(T) = oo [23]. It is well known that if both a(T") and d(T') are finite,
then a(T) = d(T') and we have the decomposition X = R(T?) ® N(T?) where
p=a(T)=d(T).
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An operator T € B(X) is upper semi-Browder if T is upper semi-Fredholm
and a(T) < co. If T € B(X) is lower semi-Fredholm and d(T") < oo, then T is
lower semi-Browder. T is called a Browder operator if it is a lower and upper
Browder operator.

An operator T' € B(X) is said to be B-Fredholm if for some integer n > 0
the range R(T™) is closed and T,,, the restriction of T' to R(T™) is a Fredholm
operator. This class of operators, introduced and studied by Berkani et al. in
a series of papers extends the class of semi-Fredholm operators. T is said to be
a B-Weyl operator if T,, is a Fredholm operator of index zero. The B-Fredholm
and B-Weyl spectra are defined by

opr(T)={A € C: T — A is not B-Fredholm};
opw(T)={A € C: T — A is not B-Weyl}.
Note that T' is a B-Fredholm operator if there exists (X1, X2) € Red(T') such
that T)x, is Fredholm and Tx, is nilpotent, see [8, Theorem 2.7]. Also, T is a
B-Weyl operator if and only if T x, is a Weyl operator and 7Tx, is a nilpotent
operator.

More recently, B-Fredholm and B-Weyl operators were generalized to pseudo
B-Fredholm and pseudo B-Weyl, see [9,25], precisely, T is a pseudo B-Fredholm
operator, if there exists (X1, X2) € Red(T) such that T)x, is a Fredholm op-
erator and T, x, is a quasi-nilpotent operator. T is said to be pseudo B-Weyl
operator if there exists (X1, X2) € Red(T) such that T,x, is a Weyl operator
and T x, is a quasi-nilpotent operator. The pseudo B-Fredholm and pseudo
B-Weyl spectra are defined by:

opr(T) ={A € C: T — Xl is not pseudo B-Fredholm};
ogpw(T) ={A € C: T — A is not pseudo B-Weyl}.
Let T € B(X), T is said to be Drazin invertible if there exist a positive integer
k and an operator S € B(X) such that

ST =TS, T"*1S=T% and S?’T=S.
Which is also equivalent to the fact that T" = T} @ Ty; where T} is invertible
and T5 is nilpotent. The Drazin spectrum is defined by
op(T) ={X € C:T — Al is not Drazin invertible}.

The concept of Drazin invertible operators has been generalized by Koliha
[14]. In fact, T € B(X) is generalized Drazin invertible if and only if 0 ¢
acc(a(T)), where acc(o(T)) is the set of accumulation points of o(T). This is
also equivalent to the fact that there exists (X7, X2) € Red(T) such that T)x,
is invertible and T)x, is quasi-nilpotent. The generalized Drazin spectrum is
defined by

ogp(T) = {A € C: T — Al is not generalized Drazin invertible}.

The concept of analytical core for an operator has been introduced by Vrbova
in [24] and study by Mbekhta [18,19], that is the following set:
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KT)={zeX : I(zn)n>0 C X and 6 >0 such that z¢ =z, Tz, =
Tn—1¥n > 1 and ||z,| < ™|z}

The quasi-nilpotent part of 7', Hy(T) is given by:

Hy(T) :={z € X;rp(z) = 0} where rr(z) = 11)1}_1 HT”xH%

In [11], M. D. Cvetkovi¢ and SC. Zivkovié-Zlatanovié¢ introduced and studied
a new concept of generalized Drazin invertibility of bounded operators as a
generalization of generalized Drazin invertible operators. In fact, an operator
T € B(X) is said to be generalized Drazin bounded below if Hy(T) is closed
and complemented with a subspace M in X such that (M, Ho(T)) € Red(T)
and T'(M) is closed which is equivalent to there exists (M, N) € Red(T') such
that T ps is bounded below and T,y is quasi-nilpotent, see [11, Theorem 3.6].
An operator T' € B(X) is said to be generalized Drazin surjective if K(T) is
closed and complemented with a subspace N in X such that N C Hy(T) and
(K(T),N) € Red(T) which is equivalent to there exists (M, N) € Red(T) such
that T,5s is surjective and Ty is quasi-nilpotent, see [11, Theorem 3.7].

The generalized Drazin bounded below and surjective spectra of T' € B(X)
are defined respectively by:

ogpm(T) ={A € C, T — X is not generalized Drazin bounded below};
ogpo(T) ={A € C, T — X is not generalized Drazin surjective}.

From [11], we have:
0gp(T) = ogppm(T) Uagna(T).

As a continuation of works [5-7,9, 11, 25], we will study various spectra
originated from Fredholm theory and related to Drazin spectrum. After given
preliminaries results, in the second section of this work, we characterize the
equality between the pseudo B-Weyl spectrum and generalized Drazin spectrum
by means of the Browder’s theorem. Also, we will give serval necessary and
sufficient conditions for T" to have equality between the spectra originated from
Fredholm theory and Drazin invertibility. In the same direction as our work
[22], we will give conditions under which pseudo B-Fredholm and pseudo B-
Weyl spectrum are stable under commuting Riesz perturbations. In section
four, we will prove that we can perturb a pseudo B-Fredholm (resp. pseudo
Fredholm) operator T' € B(X) by a bounded operator S commuting with 7" to
obtain a Fredholm (resp. semi-regular operator) T + S.

2. On pseudo semi B-Fredholm (Weyl) operators

In the following, we introduce the definition of pseudo upper B-Fredholm,
pseudo lower B-Fredholm, generalized Drazin lower semi-Weyl, generalized
Drazin upper semi-Weyl and pseudo semi B-Fredholm operators.
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Definition 2.1 ([11]). An operator T € B(X) is said to be pseudo upper
B-Fredholm if there exist two T-invariant closed subspaces X; and X5 of X
such that X = X; & X and T x, is upper semi-Fredholm operator and T|x,
is quasi-nilpotent. If ind(T x,) < 0, T is said to be generalized Drazin upper
semi-Weyl.

Definition 2.2 ([11]). An operator T' € B(X) is said to be pseudo lower
B-Fredholm if there exist two T-invariant closed subspaces X; and X5 of X
such that X = X; & Xy and T)x, is lower semi-Fredholm operator and T|x,
is quasi-nilpotent. If ind(T)x,) < 0, T is said to be generalized Drazin lower
semi-Weyl.

Definition 2.3. We say that T € B(X) is pseudo semi B-Fredholm if T is
pseudo lower B-Fredholm or pseudo upper B-Fredholm.

It is clear that T is a pseudo B-Fredholm operator if and only if T is a pseudo
lower semi B-Fredholm operator and pseudo upper semi B-Fredholm operator.
In the same way T is pseudo B-Weyl if and only if T is generalized Drazin lower
semi-Weyl and generalized Drazin upper semi-Weyl. The generalized Drazin
lower semi-Weyl and generalized Drazin upper semi-Weyl spectra of T' € B(X)
are defined respectively by:

ogpw—(T) ={A € C, T — A is not generalized Drazin lower semi-Weyl};
ogpw+(T) ={A € C, T — Al is not generalized Drazin upper semi-Weyl}.
From [11], we have:
ogpw(T) = ogpw+(T) Uogow—(T);
The pseudo upper and lower B-Fredholm spectra of T € B(X) are defined
respectively by:
opuBr(T) ={X € C, T — AI is not pseudo upper B-Fredholm};
oppr(T) ={X € C, T — X is not pseudo lower B-Fredholm}.
Also, from [11], we have:
opBF(T) = opupr(T) Uoppr(T).
The following results gives some relationship between pseudo upper/lower

B-Fredholm operator in terms of generalized Drazin invertibility.

Proposition 2.1. Let T € B(X). If there exists (N, F) € Red(T) such that
codimF < oo, dim N < oo and Tir is generalized Drazin bounded below, then
T is pseudo upper B-Fredholm.

Proof. If there exists (N, F') € Red(T) such that codimF < oo, dim N < oo
and T,r is generalized Drazin bounded below, then X = FF & N. Since T\r
is generalized Drazin bounded below, then there exist two closed T-invariant
subspaces F and F of F' such that F' = Fy®Fy, T\, is bounded below and T’ ,
is quasi-nilpotent, then X = F1 @ Fo @ N.Let M = Fy ® N, T(M) =T(Fy) +
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T(N), since T,F, is bounded below, then T'(F}) is closed. Since dim N < oo,
then T'(M) is closed. Now we have

N(Tam)=N(Tr,)®N(In)=N(Tn) CN,

because T\, is bounded below. Therefore, T, is upper Fredholm and T\, is
quasi-nilpotent. Thus T is pseudo upper B-Fredholm. (I

Proposition 2.2. Let T € B(X). If T is pseudo lower B-Fredholm, then there
evists I C X such that codimF < co and T, is generalized Drazin surjective.
Conversely, If there exists (N, F') € Red(T) such that codimF < oo, dim N

< oo and Tp is generalized Drazin surjective, then T is pseudo lower B-
Fredholm

Proof. If T is pseudo lower B-Fredholm, then there exist two closed T-invariant
subspaces X7 and X5 of X such that X = X164 X5 and T1 = T)x, is lower semi-
Fredholm and T, = T x, is quasi-nilpotent. Since T} is lower semi-Fredholm,
then codimR(T1) < oo, hence there exists N C X; such that, dimN < oo
and X7 = R(T1) ® N. Thus, X = N & R(T1) ® Xs. Let F = R(T1) & Xo,
then codimF < oo and T g(7,) is surjective and T3 is quasi-nilpotent, so T is
generalized Drazin surjective.

Conversely, if there exists (N, F') € Red(T') such that codimF' < oo, dim N <
oo and T g is generalized Drazin surjective. Since T)p is generalized Drazin
surjective, then there exist two closed T-invariant subspaces F; and F5 of F
such that F' = Fy @ Fy and T,p, is surjective and T\, is quasi-nilpotent, then
X =F®F,®N. Let M = F; & N, since T,p, is surjective, then T\p is
lower Fredholm. Since 7|y is finite rank operator, so Tipy = T\r, @ T N is lower
Fredholm. Therefore, T\p, @ T\ is lower Fredholm and 7)p, is quasi-nilpotent.
So, T is pseudo lower B-Fredholm. O

Recall that T' € B(X) is said to have the single valued extension property at
Ao € C (SVEP for short) if for every open neighbourhood U C C of )\, the only
analytic function f : U — X which satisfies the equation (T' — zI)f(z) =0
for all z € U is the function f = 0. An operator T is said to have the SVEP if
T has the SVEP for every A € C. Obviously, every operator T' € B(X) has the
SVEP at every A € p(T) = C\ o(T), hence T and T* have the SVEP at every
point of the boundary 0(c(T')) of the spectrum. Also, we have the implication

a(T) < co = T has SVEP at 0,

d(T) < oo = T™* has SVEP at 0.
In [11], the authors gave some examples showing that o4pam(T) C ogpw+(T),
04p0(T) C ogpw—(T) and o4p(T) C ogpw(T) can be proper. In the following
results we give serval necessary and sufficient conditions for T to have equality.

Proposition 2.3. Let T € B(X). Then o4pm(T) = ogpw+(T) if and only if
T has SVEP at every A ¢ g,pw+(T).
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Proof. Assume that T has SVEP at every A ¢ ogpw(T). If X ¢ o4pw+(T),
then T'— AI is generalized Drazin upper semi-Weyl, then there exists (M, N) €
Red(T) such that (T'— AI)|5; is semi-regular and (7" — AI)|x is quasi-nilpotent.
T has SVEP at every A ¢ ogpw(T), it follows that (T'— AI)|a has the SVEP
at 0, then (7" — AI)|p is bounded below. Hence T'— AI is generalized Drazin
bounded below, A ¢ o4pam(T), and since the reverse implication holds for every
operator we conclude that ogpm(T) = ogpw+(T). Conversely, suppose that
0gpMm(T) = ogpw+(T). If X ¢ ogpw(T), then T' — A is generalized Drazin
bounded below so Hyo(T' — AI) is closed. By [3, Theorem 1.7], T has SVEP at
A O

We denote by o;5(T") and oy (T) respectively the lower Browder and lower
Weyl spectra. In the same way we have the following result.

Proposition 2.4. Let T € B(X). Then oypo(T) = ogpw—(T) if and only if
T* has SVEP at every X\ ¢ ogpw—(T).

Proof. Suppose that T has SVEP at every A ¢ ogpw—(T). If A & ogpw—(T),
then by [11, Theorem 3.7], T'— Al admits GKD and A ¢ accoywy (T). T* has
SVEP at every A ¢ o,pw—(T), then T* has SVEP at every A ¢ oy (T), and so
o15(T) = oyw (T). Then A ¢ accoyp(T). Therefore, T—AI is generalized Drazin
surjective according to [11, Theorem 3.7], A ¢ o,po(T) and since the reverse
implication holds for every operator we conclude that oypo(T) = ggpw—(T).
Conversely, suppose that o4po(T) = ogpw—(T). If A ¢ o4pw—(T'), then T—\I
is generalized Drazin surjective then K (T — M) is closed and complemented
with a subspace N in X such that N C Ho(T — M) and (K(T — MX),N) €
Red(T — A1), so K(T — A\) + Ho(T — \) = X. From [3, Theorem 1.7], T* has
the SVEP at . (]

As a consequence of the two previous results we have the following proposi-
tion.

Proposition 2.5. Let T € B(X). Then o4p(T) = o4pw(T) if and only if T
and T* have the SVEP at every A ¢ o,pw(T)

A bounded linear operator T is said to satisfy Browder’s theorem if oy (T') =
op(T), or equivalently acco(T) C ow (T), where op(T) is the Browder spec-
trum of T'.

It is known from [2] that a-Browder’s theorem holds for T if o,w (T) =
ou5(T), or equivalently acco,,(T) C o,w (T'), where o,5(T) and o,w (T) are
the upper semi-Browder and upper semi-Weyl spectra of T

The following result shows that Browder’s (a-Browder’s) theorem holds for
T precisely when o,p(T) = ogpw(T) (6gpm(T) = ogpw+(T)), which give
new characterizations for Browder’s and a-Browder’s theorems.

Theorem 2.1. Let T € B(X). Then
1) a-Browder’s theorem holds for T if and only if cgpm(T) = ogpw+(T).
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2) a-Browder’s theorem holds for T* if and only if o4po(T) = ogpw—(T).
3) Browder’s theorem holds for T if and only if o4p(T) = o4pw(T).

Proof. 1) Suppose that a-Browder’s theorem holds for T implies o,5(T) =
TuWwW (T)
Using [11, Theorems 3.4 and 3.6], we conclude that
AX¢ogpm(T) <= T — A is generalized Drazin bounded below
<= T — Al admits a GKD and X ¢ acco,p(T)
<= T — A\l admits a GKD and X ¢ acco,w (T)
<= T — M is generalized Drazin upper semi-Weyl
= X oow+(T).
Hence o,pm(T) = ogpw+(T). Conversely, if ogpm(T) = ogpw+(T), from
Proposition 2.3, T has SVEP at every A ¢ o,pw4(T). Since ogpw(T) C
ouw (T), T has SVEP at every A ¢ o, (T), so a-Browder’s theorem holds for
T, see [2, Theorem 4.34].
2) Suppose that a-Browder’s theorem holds for T* then o;5(T) = oyw (T).
Using [11, Theorems 3.4 and 3.7] we have
A¢ogpo(T) <= T — A is generalized Drazin surjective
<= T — M admits a GKD and A ¢ accoip(T)
<= T — M admits a GKD and A ¢ accoyw (T')
<= T — A is generalized Drazin lower semi-Weyl
= Xéopnw-(T).
Hence o4po(T) = ogpw—(T). Conversely, if o4po(T) = ogpw—(T), from
Proposition 2.4, T* has SVEP at every A ¢ oypw—(T). Since ogpw—(T) C
ow (T), T* has SVEP at every A ¢ oyw (T), so a-Browder’s theorem holds for
T*, see [2, Theorem 4.34].

3) Suppose that Browder’s theorem holds for T then op(T) = ow (T).
Using [11, Theorems 3.4 and 3.9] we have

Aé¢og,p(T) T — A is generalized Drazin invertible
T — Al admits a GKD and A ¢ accop(T)
T — Al admits a GKD and X ¢ accow (T)
T — M is generalized Drazin Weyl
A ¢ O'gDyv(T).
Hence o4p(T) = ogpw(T'). Conversely, if o4p(T) = ogpw(T), from Proposi-
tion 2.5, T and T™ has SVEP at every A ¢ o,pw(T'). Since o4pw(T) C ow (T),
T has SVEP at every A ¢ ow (T'), so Browder’s theorem holds for T, see [2, The-
orem 4.23]. O

Treey

It will be said that generalized Browder’s theorem holds for T € B(X) if
opw (T) = o(T)\II(T), equivalently, ocpw (T) = op(T'), where II(T) is the set



SPECTRA ORIGINATED FROM FREDHOLM AND BROWDER’S THEOREM 861

of all poles of the resolvent of T ([4]). A classical result of the second author
and H. Zguitti [6, Theorem 2.1] shows that Browder’s theorem and generalized
Browder’s theorem are equivalent. According to the previous results and the
equivalent between Browder’s theorem and generalized Browder’s theorem [6,
Theorem 2.1] we have the following theorem.

Theorem 2.2. Let T € B(X). The statements are equivalent:
1) Browder’s theorem holds for T}
2) generalized Browder’s theorem holds for T}
3) T and T* have SVEP at every A ¢ o4pw(T);
4) 0gp(T) = ogow(T).

In the same way we have the following result.

Theorem 2.3. Let T € B(X). The statements are equivalent:
1) a-Browder’s theorem holds for T}
2) generalized a-Browder’s theorem holds for T}
3) T has SVEP at every A ¢ o,pw+(T);
4) 0gpm(T) = ogpw(T).

We denote by 04(T") and 0, 5(T), T € B(X), respectively the lower and upper
semi-Fredholm spectra. Concerning the pseudo upper/lower B-Fredholm spec-
trum and the generalized Drazin bounded below /surjective spectrum, we have
the following characterization. Note that op,pr(T) C dgpm(T), oppr(T)
C ogpo(T) and op,pr(T) C o4p(T') are strict [11].

Theorem 2.4. Let T € B(X). The statements are equivalent:
1) 0wy (T) = oup(T);
2) T has SVEP at every A ¢ o,5(T);
3) T has SVEP at every A ¢ opupr(T);
4) OgDM (T) = UpuBF(T)-

Proof. 1) <= 2): Suppose that T has SVEP at every A ¢ o,;(T). If X ¢
ouf(T), T— A is upper semi-Fredholm. T has SVEP at A, then a(T'—\I) < oo,
see [1, Theorem 3.16]. So A ¢ o,p(T). Now, suppose that o, f(T) = oup(T).
Let A ¢ 0us(T), A ¢ 0up(T) then a(T — M) < 00, hence T has SVEP at A by
[1].

3) <= 4): Suppose that T has SVEP at every X\ ¢ opupr(T). If X ¢
opuBr(T), T — Al is pseudo upper B-Fredholm, then there exists (M,N) €
Red(T) such that (T'— AI)|5; is semi-regular and (T — AI)|y is quasinilpotent.
T has SVEP at every A ¢ 0,,pr(T) implies (T' — AI)|p; has the SVEP at 0, it
follows that (7' — AI)|5s is bounded below. Hence T'— AI is generalized Drazin
bounded below, A ¢ o4pam(T), and since the reverse implication holds for
every operator we conclude that ogpm(T) = opupr(T). Conversely, assume
that oypm(T) = opupr(T). It X & 0pypr(T), then T— AT is generalized Drazin
bounded below so Hyo(T — AI) is closed. By [3, Theorem 1.7], T has the SVEP
at A
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1) <= 4): Suppose that o, (T) = ou5(T).
According to [11, Theorems 3.4 and 3.6] we have

A& ogpm(T) T — M is generalized Drazin bounded below
T — Al admits a GKD and X ¢ acco,p(T)
T — AI admits a GKD and A ¢ acco,¢(T')

T — A is pseudo upper B-Fredholm

)\ ¢ UpuBF(T)-

rrene

Hence oypm(T) = opupr(T). Conversely, if o,pm(T) = opupr(T), then by
3) <= 4), T has SVEP at every A ¢ 0,,5r(T). Since op,pr(T) C 0y (T), T
has SVEP at every A ¢ 0,5(T), 1) <= 2) gives the result. O

Theorem 2.5. Let T € B(X). The statements are equivalent:
1) 014(T) = o15(T);
2) T* has SVEP at every A ¢ o15(T);
3) T* has SVEP at every A ¢ oppr(T);
4) ogpo(T) = opr(T).

Proof. 1) <= 2): Suppose that T* has SVEP at every A ¢ oy(T). X ¢
o1£(T) implies that T — AI is lower semi-Fredholm. T™ has SVEP at A, then
d(T — M) < oo, see [1, Theorem 3.17]. So A ¢ o;(T). Now, Suppose that
o1 (T) = oyp(T). Let A & 015(T), A ¢ oyp(T) then d(T — M) < oo, hence T*
has SVEP at A by [1].

3) <= 4): Suppose that T has SVEP at every A ¢ oppr(T). If X ¢
opier(T), T —AI admits GKD and A ¢ accoyf(T) by [11, Theorem 3.4]. T™* has
SVEP at every X ¢ opipr(T), it follows that T* has SVEP at every A ¢ o;¢(T),
then oy5(T) = 014(T) so X ¢ accoyp(T'). Therefore, T—AI is generalized Drazin
surjective [11, Theorem 3.7], A ¢ o4po(T) and since the reverse implication
holds for every operator we conclude that o4po(T) = oppr(T). Conversely,
suppose that 64po(T) = opipr(T), if A ¢ oppr(T), then T'— Al is generalized
Drazin surjective then K (T — AI) is closed and complemented with a subspace
N in X such that N C Ho(T — M) and (K (T — AI), N) € Red(T — ), so
K(T — M)+ Ho(T — M) = X. From [3, Theorem 1.7], T* has SVEP at \.

1) <= 4): Suppose that o;¢(T) = o15(T).

According to [11, Theorems 3.4 and 3.7] we have

A¢ ogpo(T) T — A is generalized Drazin surjective

T — M admits a GKD and \ ¢ acco;(T)
T — M admits a GKD and X ¢ accoyf(T)
T — A is pseudo lower B-Fredholm

A ¢ oppr(T).

1reny
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Hence 04po(T) = oppr(T). Conversely, if oypo(T) = oppr(T), by 3) <=
4), T* has SVEP at every A ¢ o,pr(T). Since oppr(T) C o14(T), T has
SVEP at every A ¢ 017(T'), according to 1) <= 2) we obtain the result. O

As a direct consequence of Theorem 2.4 and Theorem 2.5 we have the fol-
lowing corollary.

Corollary 2.1. Let T € B(X). The statements are equivalent:
1) 0.(T) = op(T);
2) T and T* have SVEP at every A ¢ o.(T);
3) T and T* have SVEP at every \ ¢ opp(T);
4) opp(T) = op(T);
5) T and T* have SVEP at every A ¢ oppp(T);
6) ogp(T) = oppr(T).

3. Perturbations

Now, we consider the classes of operators introduced in [11]:
gDR :={T € B(X); there exists (M, N) € Red(T) such that
Ty € R and Ty is quasinilpotent}.

DR :={T € B(X); there exists (M, N) € Red(T) such that
Ty € R and Ty is nilpotent}.

Where R denote any of the following classes: bounded below/surjective opera-
tors, upper(lower) semi-Fredholm operators, Fredholm operator, upper(lower)
semi-Weyl operators.

Proposition 3.1. Let T € B(X). If T € gDR, then there exists o > 0 such
that for every S € B(X) invertible operator satisfying ST =TS and ||S|| < «,
we have T — S € DR.

Proof. f T € gDR, then T admits a GKD and 0 € accor(T), see ([11]). From
[10, Theorem 2.1] T — S is semi-regular, and since accog(T — S) = accor(T),
or(T) the spectrum associated to the class R, then T is of Kato type and
0 € accogr(T — S). According to [11, Theorem 4.1}, T — S € DR. O

Let F(X) denote the ideal of finite rank operators on X. A bounded linear
operator F' € B(X) is power finite rank if F" € F(X) for some n € N. In
what follow, we will prove that pseudo B-Weyl operators satisfying Browder’s
theorem is stable by power finite rank perturbations.

Proposition 3.2. Let T € B(X), F™ € F(X) for some n € N commutes with
T. Then:
(1) If T satisfy Browder theorem, then oypw(T + F) = o4pw(T);
(2) If T and T* have SVEP at every A\ ¢ o.(T), then oppp(T + F) =
O'pBF(T).
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Proof. (1) According to [26, Theorem 2.2], we have acc(o(T)) = acc(c(T+F)).
Then A € 04p(T) if and only if A € ace(o(T)) if and only if A € acc(o(T + F))
if and only if A € o4p(T + F). So 04p(T + F) = 04p(T). Theorem 2.1 and
Corollary 2.1 give the result. O

By the same argument we have the following proposition.

Proposition 3.3. Let T € B(X) satisfy Browder theorem, Q a quasi-nilpotent
operator commutes with T. Then:

(1) If T satisfy Browder theorem, then o,pw(T + Q) = 04w (T);

(2) If T and T* have SVEP at every X\ ¢ o.(T), then oppr(T + Q) =

O'pBF(T).
Proof. Since o4p(T + Q) = o4p(T), from Theorem 2.1 and Corollary 2.1 we
have the result. ]

Remark 1. Let T € B(X), we have op,pr(T) C 0.(T), 0gpw(T) C ow(T) and
04p(T) C op(T) but generally these inclusions are proper. Indeed, let T" and
S defined on I2(N) by

1 1 1
T(x1,22,23,...) = (51'2, gIg, ) S(zy,me,x3,...) = (0, §$1,0,07...).

Then T is quasi-nilpotent with infinite ascent and hence
ogp(T) =0 but op(T) = {0}.
Furthermore,
opBr(S) = ogpw(S) = 0 but 0.(S) = ow(S) = {0}.

The following lemma, will be needed in the sequel to study Riesz perturba-
tions.

Lemma 3.1. Let T € B(X).

1) op(T) = 04p(T) Uiso(op(T));
2) o(T) = ogp(T) Uiso(a(T));
3) 05e(T) = 04k (T) Uiso(ose(T));
4) 0es(T) = 04k (T) Uiso(oes(T));
5) 0¢(T) = oppr(T) Uiso(oe(T));
6) Uw(T) = Ug[)w(T) @] iSO(Uw(T)).

Proof. (1) Let A € op(T)\ogp(T), then T — X is a generalized Drazin operator
hence there exists an € > 0 such that T — p is Drazin invertible for all p €
D(\ )\ {\}. Indeed, if T'— X is a generalized Drazin operator, then there exist
two closed T-invariant subspaces X1 and X5 of X such that X = X; & X5 and
T-A=(T-X)x,®(T—M\)x, where (T — \),x, is invertible and (T'— \) x, is
quasi-nilpotent. If X; = {0}, T'— )\ is quasi-nilpotent, then for all u # X\, T —
is invertible, hence T — p is Drazin invertible. If X; # {0}, then (T'— \)x,
is invertible, hence there exists € > 0 such that (T — u),x, is invertible for all
€ D(), €), hence T'— p is Drazin invertible for all u € D(\€). As (T—\),x, is
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quasi-nilpotent, then for all u # X (T — i) x, is invertible and hence (T — p),x,
is Drazin invertible for all p € D(X,e) \ {\}. Since (T — u) x, and (T — p),x,
are Drazin invertible for all y € D(A e) \ {A}, then we get T'— p is Drazin
invertible for all 4 € D(A,¢) \ {A}. This implies that

D\ e)\{\}nop(T) =10,
hence A € iso(op(T)). Therefore,
op(T) C ogp(T) Uiso(op(T)).

The reverse inclusion is always true.

The assertion (2) is clear, since o4p(T") = acco(T).

For (3), let A € 04(T) \ 0gx(T), T — X is a pseudo Fredholm operator.
By [12, Theorem 2.2], there exists an € > 0 such that T — u is semi-regular
for all 4 € D(A€) \ {\}, this implies that D(A,€) \ {A\} N o (T) = 0, hence
A € i50(0se(T)). Therefore, o5.(T) C o4 (T) U iso(os(T)), the opposite
inclusion is always true.

To prove (4), let A € 0¢5(T) \ 0gx (T), T — A is a pseudo Fredholm operator.
By [12, Theorem 2.2], there exists an € > 0 such that T'— s is semi-regular for all
€ D(A, e)\{A}, hence T'— pu is essentially semi-regular for all u € D(\, e)\{A},
this implies that D(\ €) \ {A\} Noes(T) = 0, thus A € iso(cs.(T)). Therefore,
Oes(T) C ogr (T) Uiso(oes(T)), since o4x(T) C 0es(T), we have

Oes(T) = 0gi (T) Uiso(ces(T)).

For the assertion (5), let A € 0.(T) \ oppr(T), then T — X is a pseudo B-
Freholm operator, hence there exists an € > 0 such that 7" — p is Fredholm
for all p € D(X\e) \ {A}. Indeed, without loss of generality we can assume
that A = 0. If T is pseudo B-Fredholm, then there exist two closed T-invariant
subspaces X; and Xy such that X = X; & Xs; T x, is Fredholm, T x, is quasi-
nilpotent and T'=T\x, ® T x,.

If X; = {0}, T is quasi-nilpotent, hence ul — T is invertible for all u # 0,
that is uf — T is Fredholm for all p # 0.

If Xy # {0}, then T,x, is Fredholm, hence there exists & > 0 such that
(uI —T),x, is Fredholm for all 4 € D(0,¢). As Tx, is quasi-nilpotent, then
for all p # 0, (uI — T),x, is invertible, then (uI — T)x, is Fredholm for
all 4 € D*(0,¢). Since (ul — T)x, and (uI — T),x, are Fredholm for all
w € D*(0,¢), we have pI — T is Fredholm for all ;1 € D*(0,¢).

This implies that D(X, €)\{A\}Noe(T) = 0, hence A € iso(o.(T)). Therefore,

0e(T) C 0ppr(T) Uiso(o(T)).

Since the opposite inclusion is true, then we conclude (5).
By a similar argument as in (5), we can prove (6). O

Theorem 3.1. Let T € B(X) and R € B(X) be a Riesz operator which com-
mutes with T'. Then the following statements hold:

(1) Ifiso(oe(T)) =0, then oppr(T + R) = oppr(T);
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(2) IfZSO(UW(T)) =0, then O'gpw(T+ R) = ngw(T>.
Proof. To prove (1), we have o.(T + R) = o(T) and since iso(oe(T)) = 0,
then by Lemma 3.1, we get 0,57 (T") = 0c(T), hence o,5r (T + R) = oppr(T).
For the assertion (2), we have ow (T + R) = ow (T) and since iso(ow (T"))
then by Lemma 3.1, we have o,pw(T) = ow(T), hence ogpw(T + R) =
UpBW(T)- U

Note that the essential quasi-Fredholm spectrum is not stable under com-
muting quasi-nilpotent and compact perturbations, hence it is not stable under
commuting Riesz perturbation, see [20].

Theorem 3.2. Let T € B(X).
(1) Ifiso(ces(T)) = 0 and R is a Riesz operator such that TR = RT, then
09k (T'+ R) = 04 (T) and 0eq(T + R) = 0¢4(T).
(2) Ifiso(cse(T)) =0 and Q is a quasi-nilpotent operator such that QT =
TQ, then
ook (T4 Q) =04k (T) and 0.¢(T + Q) = 0¢4(T).

Proof. To prove (1), since g4 (T) C 0¢q(T) C 0es(T), then by part (4) of
Lemma 3.1, we have
Oeq(T) Uiso(oes(T)) = 0es(T).

According to [15, Corollary 17], if R is a Riesz operator commutes with T', then
we have o¢s(T + R) = 0es(T'). By hypothesis is0(0es(T)) = 0, 0es(T) = 0eq(T)
and by Lemma 3.1, we have o¢s(T) = 04k (T). This gives the result.

To prove (2), from [20], if @ is a quasi-nilpotent operator, then we have
0se(T + Q) = 05¢(T). By hypothesis iso(os.(T)) = 0, hence by Lemma 3.1, we
have that o4.(T) = 04k (T). This gives the result. O

Example 1. Let T be an unilateral weighted right shift on IP(N), 1 <p < oo,
with weight sequence (wy,)nen. If limy, o0 inf(wy - - - wy, )™ = 0, then T and
T* have the SVEP and by [1, Corollary 3.118]:

Osu(T) = 0ap(T) = 05e(T) = 0e(T) = ow (T) = o(T) = D(0, (1)),

where D(0,7(T)) the closed disc, hence iso(c(T)) = iso(ow (T)) = iso(c.(T))
= (). If R is a Riesz operator which commutes with T and Q a quasi-nilpotent
operator commutes with T, then:

o9k (T + Q) = 0gk (T); oppr(T + R) = 0ppr(T); oppw (T + R) = oppw (T).
4. Commutator and pseudo B-Fredholm perturbations

Let T, S € B(X), denote by [T, S] the commutator of T and S.

In what follows, we prove that we can perturb a pseudo B-Fredholm operator
T € B(X) by a bounded operator S satisfying [T, S] = 0 to obtain a Fredholm
operator T' + S.
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Proposition 4.1. Let T € B(X) be a pseudo B-Fredholm operator. Then there
exists S € B(X) such that:

T+ S is Fredholm, TS is quasi-nilpotent and [T, S] = 0.
Proof. If T is pseudo B-Fredholm, then there exist two closed T-invariant sub-
spaces X; and Xs of X such that X = X; & Xy and T} = T)x, is upper semi-
Fredholm and Ty = Tx, is quasi-nilpotent. Let S = 0& (Iz — T3), Iz = I|x,.
Since T7 is Fredholm, then T'+ S =T} & I5 is a Fredholm operator. We have:
TS =[T1 ®T|[0® (I —T3)]

=To(I; = Ts) = (Io — T2)T3

=[0® (Is — T2)|[T1 ® To] = ST.
From the well known spectral radius formula

’I"(TS) = 7“((]2 — TQ)TQ) S T(Ig — TQ)?"(TQ) =0.
Therefore T'S is quasinilpotent. ([
In what follows, we prove that we can perturb a pseudo Fredholm operator

T € B(X) by a bounded operator S satisfying [T,S] = 0 to obtain a semi-
regular operator T' + S.

Proposition 4.2. Let T € B(X) be a pseudo Fredholm operator. Then there
exists S € B(X) such that:

T+ S is semi-reqular, T'S is quasi-nilpotent and [T, S] = 0.

Proof. Since T is a pseudo Fredholm operator then there exist subsets M and
N of X such that

X=Mé&NandT=T1d1T;

with 71 = T}y is a semi-regular operator and T> = T|y is quasi-nilpotent. Let
S=0® (I —Ts), I = I|y. Since T} is semi-regular then '+ S =T ® I3 is a
semi-regular operator. We have:
TS = [T1 @ TQ] [O @ (IQ - TQ)]
=Tyl = Tz) = (I — T>) 1>

In the following, we give a generalization of [21, Theorem 2.1] and [17, Propo-
sition 1.1].

Theorem 4.1. Let T € B(X) be a pseudo B-Weyl operator. Then there exists
an operator F € B(X) such that T + \F is invertible for all A € C\ {0} and

[T, Fla(T, F)[T, F] = 0.
Where q(T, F) is any polynomial in T and F.
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Proof. T is a pseudo B-Weyl operator, then there exist two closed T-invariant
subspaces X; and X5 of X such that X = X; ® Xy and 71 = T x, is pseudo B-
Weyl and Ty = T x, is quasi-nilpotent. Since T7 is a Weyl operator ind(T;) = 0,
according to [21, Theorem 1.2], there exists Fy € B(M) such that T3 + AF} is
invertible and [Ty, F1)q(T1, F1)[T1, F1] = 0, where ¢(T1, F1) is any polynomial
in Ty and F;. Set F = F| & I, where I is the restriction of I to X5. T5
is quasi-nilpotent this implies that T5 4+ Al is invertible for all A # 0, hence
T+ N =1T,d T + )\(Fl D 12) = (T1 + /\F1) D (T2 + )\12) is invertible.
On the other hand, [T,I3] = 0 and [T, F1]q(Th, F1)[T1, F1] = 0 therefore
[T, Flq(T, F)[T, F] = 0 where ¢(T, F) is any polynomial in 7" and F. O
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