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NIL-CLEAN RINGS OF NILPOTENCY INDEX
AT MOST TWO WITH APPLICATION TO
INVOLUTION-CLEAN RINGS

Yu Li, XIAOSHAN QUAN, AND GUOLI XIA

ABSTRACT. A ring is nil-clean if every element is a sum of a nilpotent
and an idempotent, and a ring is involution-clean if every element is a
sum of an involution and an idempotent. In this paper, a description of
nil-clean rings of nilpotency index at most 2 is obtained, and is applied
to improve a known result on involution-clean rings.

1. Introduction

Throughout this paper we assume that rings have an identity and the sub-
rings share the same identity. For a ring R, the Jacobson radical and the set of
nilpotents of a ring R are denoted by J(R) and Nil(R), respectively. Recently,
involution-clean rings were introduced in [3] where the author proved that the
structure of an involution-clean ring is reduced to a nil-clean ring R such that
a? 4+ 2a = 0 for all a € Nil(R) (see Lemma 3.1). In this paper, we target this
class of nil-clean rings, and relate them to nil-clean rings of nilpotency index at
most 2. We prove a description of nil-clean rings of nilpotency index at most
2, and use it to further describe involution-clean rings.

As usual, M,,(R) stands for the n x n matrix ring over R and T, (R) for
the n X n (upper) triangular matrix ring over R. We write Z,, for the ring of
integers modulo n. An element a in a ring R is called an involution if a? = 1.
A reduced ring is a ring without nonzero nilpotents. A ring is said to be of
nilpotency index at most n if a” = 0 for all a € Nil(R).
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2. Nil-clean rings of nilpotency index at most 2

Following Diesl [4], a ring R is nil-clean if every element of R is a sum of a
nilpotent and an idempotent. One easily sees that a ring R is Boolean if and
only if R is a nil-clean ring of nilpotency index 1. In this section, we describe
nil-clean rings of nilpotency index at most 2. Notice that the structure of a
general nil-clean ring is, so far, unknown.

Lemma 2.1. The following are equivalent for a ring R:

(1) Every element of R is a sum of an idempotent and a square-zero ele-
ment.

(2) R is nil-clean of nilpotency index < 2.

(3) R/J(R) is mil-clean of nilpotency index < 2, and a®> = 0 for all a €
J(R) UNIil(R).

Proof. (1) = (2). It suffices to show that a"*! = 0 whenever a"*? = 0 in R
forn > 1. Write 1 +a = b+ e where b> =0 and e? =e. Let f =1 —e. Then
f+a=0b,s0
0= (f+a)?=f+fataf+a’

Thus, 0 = (f+fa+af+a?)a™ ! = fa" ' +afa" ™t = (14a)fa" T, so fa" ™t =
0 (as 1+ais a unit). Hence 0 = (f+ fa+af+a?)a™ = fa"+afa™ = (1+a)fa™,
so fa® = 0. Thus, 0 = (f + fa +af +a®)a" ! = fa" ! +afa” ! +a"t! =
(14a)fa™ 1 +a"*! 500 = a[(1+a)fa" ' +a"] = (1+a)afa™ !, and hence
afa™t = 0. It follows that fa" ! +a"*! = 0. So 0 = f[fa" !+ a"!] =
fa" '+ fa™t! = fa" . It follows that a”t! = 0.

(2) = (3) = (1). The implications are clear in view of [4, Corollary 3.17]. O

Let (ro) € [[{Ra : @ € T'}. The support of (ry) is the subset A ={a €T :
rq # 0}. We will denote (r,) by (ry),. Here is a description of a nil-clean ring
of nilpotentcy index < 2.

Theorem 2.2. A ring R is a nil-clean ring of nilpotency index < 2 if and only
if a®> =0 for all a € J(R) UNil(R) and R/J(R) is a subdirect product of rings
{Ro : @ €T}, where Ry = Za or Ma(Z2), such that whenever (z,), € R/J(R)
with 23 =1 and x, # 1 for all « € A, there ezists (yo), € R/J(R) with y, # 0
and y2 =0 for all o € A.

Proof. (=) By Lemmas 2.1, a®> = 0 for all @ € J(R) UNil(R). Moreover,
R/J(R) is nil-clean of nilpotentcy index < 2. So, by [1, Theorem 1], R/J(R)
is a subdirect product of prime rings {R, : @ € A} of nilpotency index < 2.
Hence, by [2, Corollary 6], for each o, R, = M, (D) where D is a division ring
and n < 2. As M, (D) is still nil-clean, D = Zy by [5, Theorem 3]. So R, & Z
or Ry = M3(Z2). Identify R/J(R) as a subring of [[ Ra.

If R/J(R) contains an element x := (2,), where 1 # z, € R, with 23 =1
for all @ € A, then, as z is nil-clean in R/J(R), there exists a nilpotent y €
R/J(R) such that x 4+ y is an idempotent. Write y = (y,) where y, € Ry. It
must be that y, = 0 for « € IT'\A and y, # 0 for a € A. So y = (Yo ), -
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(<) We only need to show that R is nil-clean. As J(R) is nil, it suffices
to show that R/J(R) is nil-clean by [4, Corollary 3.17]. Regard R/J(R) as a
subring of [[ Ra.

Let z € R/J(R). Write z = (z,) where z, € R,. In R,, there are four
types of elements b: b = 0; b> = b; b> = 1 with b # 1; b3 = 1 with b # 1.
Thus, we can write I as a disjoint union of Ay, Ag, A3 and A4 such that 22 = 0
if and only if a € A1; 22 = =, if and only if a € Ag; 22 = 1 with z, # 1 if

and only if o € A3; 23 = 1 with x, # 1 if and only if o € A4. Without loss

of generality, we can c?enote x = (Ta) = ((asa)Al,(:va)A2,(xa)A3, (xa)A4). We
have
z+z" = ((za),,,0,0,0),
2?4+ 2° = (0,0,1+ (z4),,,0),
(2 +2° +2% + 1;7)2 =(0,0,0,(z4),,)-

So (z4),, € R/J(R). By our assumption, there exists (ya),, € R/J(R) with
Yo # 0and y2 = 0 for all @ € Ay. One can check that (z),, +(va)s, € R/J(R)
is an idempotent. We see that

Y ::((xa)/\l 0,1+ (xa)AS ) (yOl)A4)
=((#a),,,0,0,0) 4 (0,0,1 + (x4),,,0) + (0,0,0, (ya),,) € R/J(R)

is nilpotent, and

(0’ (mo&)/\z 1, (xa)A4 + (ya)A4) =z+y€ R/J(R)

is an idempotent. Therefore, x = y+ (z+y) is nil-clean in R/J(R). So R/J(R)
is nil-clean. ]

Corollary 2.3. IfR/J(R) = S@ ([[M2(Z2)) for a Boolean ring S with J(R)
nil such that a®> = 0 for all a € Nil(R), then R is nil-clean of nilpotency index
<2.

A subdirect product of a Boolean ring and a family of copies of My(Zs) need
not be a nil-clean ring.

Example 2.4. Let T = [[°_, R; where R, = Mj(Z,) for all i > 1. Let
z = (z) € T where z; = (91) € My(Z3). Let S be the subring of T' generated
by z,ie., S={0,1,21+ 2z} where 22 = 1+ 2. Let R= (;2; R;) + 5. Then
R is a subdirect product of {R;}, so J(R) = 0 and R has nilpotency index
2. However, although R contains z, R does not contain a nilpotent (y;) with
y; # 0 for all ¢ > 1. So R is not nil-clean by Theorem 2.2.

In general, it is unknown whether R nil-clean implies that the corner ring
eRe (e? = e € R) is nil-clean (see [4, Question 2]). But we have:

Corollary 2.5. If R is a nil-clean ring of nilpotency index at most 2, then so
is eRe for all e = e € R.
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Proof. Let S = eRe. Then J(S) = eJ(R)e C J(R) and Nil(S) C Nil(R).
Since R is a nil-clean ring of nilpotency index at most 2, a®> = 0 for all a €
J(R) UNil(R) by Theorem 2.2, so a? = 0 for all a € J(S) UNil(S). Moreover,
R := R/J(R) is a subdirect product of {R,, : « € I'} where either R, = Zy or
Ry = My (Z3). That is, R is a subring of [[ R, such that 7, (R) = R, where
7o : [ Ra — Ra is the natural projection for all « € I'. Let € = e+ J(R) € R.
Write é = (e,) where e, € R, is an idempotent. It is easily seen that eRe is
a subring of [] eqRa€a With 7, (ERE) = eqRaeq for all a. That is, eRe is a
subdirect product of {e,Rneq}. We notice that, if R, = Zs, then e, Rpeq =0
or eq Roeq = Zo, and that, if R, = My(Zs), then e, Roen = 0, or e Roeo = Zo,
or eqRyeq = My (Zs) (this only occurs when e, is the identity of R,,). Suppose
that # = (z4)a € eRe where e, # T € eqRaeq With 22 = ¢, for all a € A.
It must be that, for each @ € A, R, = My(Z3) and e, = 1g,. Then, by
Theorem 2.2, there exists y = (yo)a € R such that y, # 0 and 2 = 0. But
y = eye € eRe. Note that S/J(S) = eRe/eJ(R)e = eRe/(eRe N J(R)) =
(eRe + J(R))/J(R) = eRe. Hence, by Theorem 2.2, S is a nil-clean ring of
nilpotency index at most 2. O

A ring R is strongly w-regular if for each a € R, there exists n > 1 such that
a" € a""'R N Ra™*!. It is unknown whether every nil-clean ring is strongly
m-regular (see [4, Question ]). However, every nil-clean ring of nilpotency index
at most 2 is certainly strongly m-regular.

Corollary 2.6. If R is nil-clean of nilpotency index < 2, then R is strongly
w-regular.

Proof. 1f a € J(R), then a® = 0. Suppose that a ¢ J(R). Let z = a € R/J(R)
As in the proof of Theorem 2.2, z = (24) = ((Ta)s,, (Ta)s,, (Ta)s, )ay)-
Moreover, & 4+ 27 = ((24),,,0,0,0), so (z +z7)? =0, ie., (a—i— a ) ( ).
Hence, a*(14+a%)* = (a+a")* = ((a+a")?)? = 0, showing that a* € ad®RNRad.
So R is strongly m-regular. (I

3. Involution-clean rings

Following Danchev [3], a ring is an involution-clean ring if every element is
a sum of an idempotent and an involution. The following result is proved in
3].
Lemma 3.1 ([3]). A ring R is an involution-clean ring if and only if R = Ax B,

where A is a nil-clean ring with a* + 2a = 0 for all a € Nil(A) and B is zero
or a subdirect product of Z3’s.

Next, we give a further description of the ring A in the decomposition in
Lemma 3.1.

Lemma 3.2. A ring R is nil-clean with a®> + 2a = 0 for all a € Nil(R) if and
only if R/J(R) is nil-clean of nilpotency index < 2, J(R) nil and a® +2a = 0
for all a € Nil(R).
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Proof. In view of [4, Proposition 3.14 and Corollary 3.17], we see that

R is nil-clean with a? 4 2a = 0 for all a € Nil(R)
<= R/J(R) is nil-clean with J(R) nil and with a® + 2a = 0 for all a € Nil(R)
<= R/J(R) is nil-clean of nilpotency index < 2, J(R) nil and

a® 4 2a = 0 for all a € Nil(R). O

Theorem 3.3. A ring R is an involution-clean ring if and only if R = A x B,
where

(1) B is zero or a subdirect product of Zs’s.

(2) J(A) is nil, a®> +2a = 0 for all a € Nil(A), and A/J(A) is a subdirect
product of rings {As : o € T'}, where Ay = Zy or Ma(Zs), such that
whenever (z,), € A/J(A) withz3 =1 and z, # 1 for all a € A, there
ezists (Ya), € A/J(A) with y, # 0 and y2 =0 for all a € A.

Proof. This is by Lemmas 3.1, 3.2 and Theorem 2.2. O

Corollary 3.4. IfR/J(R) = S@ ([IM2(Z2)) for a Boolean ring S with J(R)
nil such that a® +2a = 0 for all a € Nil(R), then R is an involution-clean ring.

As seen in Example 2.4, a subdirect product of a Boolean ring and a family
of copies of M(Z2) need not be an involution-clean ring.

Next we determine when a (formal or triangular) matrix ring is involution-
clean.

Proposition 3.5. Let S, T be rings and M a non-trivial (S, T)-bimodule. Then
the formal matriz ring (§ M) is an involution-clean ring if and only if S, T are

involution-clean rings and Nil(S)M = MNil(T) = 2M = 0.

Proof. (=) If x € M, then ({ 90”)2 +2(§%) =0, and this shows that 2z = 0.
Hence 2M = 0. Let a € Nil(S) an 2 € M. Then (&%)° +2(&%) = 0, and
this shows that az = —2x = 0. So Nil(S)M = 0. Similarly MNil(T) = 0. As
images of (g M), S and T are clearly involution-clean rings.

(<) We write S = A@ A and T = B® B’ where 8 = 0 in A and in
B, A’ ® B’ is zero or a subdirect product of F3’s. Write 1¢ = 14 + 14/ and
17 = 1 4+ 1p/. From 2M = 0, one deduces that 14,M = 0 and M1p = 0,
and that 142 = x1g = x for all x € M. Therefore,

(5 4)= (2 W) s
Thus, we only need to show that (4 %) is an involution-ring. Let (§3) €
(4 M), Writea = e+vand b= f+w wheree? =¢,v? =1, f2 = fand w? = 1.
Then (1 +v)? = 2(1 +v) € J(A), so (1 +v)z = 0. Similarly, z(1 + w) = 0.
Thus vz + 2w = (1+v)z+a(l4+w) -2z =0,s0 (§%) = (§%) +(§5)isa
sum of an idempotent and an involution. O

Theorem 3.6. Let R be a ring and n > 2. The following are equivalent:
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T, (R) is an involution-clean ring.

T, (R) is a nil-clean ring of nilpotentcy index < 2.
n =2 and R is Boolean.

M, (R) is a nil-clean ring of nilpotency index < 2.
M, (R) is an involution-clean ring.

Proof. (1) = (3) Write T, (R) = (5§ %), where S = T,_1(R) and M =
M, —1)x1(R). By Proposition 3.5, 2 = 0 in R and Nil(S)M = 0, from which
we deduce that n = 2 and R is a reduced ring. As an image of Ty(R), R is
involution-clean. Thus, R is a subdirect product of involution-clean domains
in which 2 is zero. One easily sees that each of the domains is isomorphic to
Zs, so R is Boolean.

(3) = (2) Let (8%) € To(R). Then (g%) = (32)+(3%) is a sum of an
idempotent and a square-zero element.

(2) = (1) As 2 € Nil(R), 2Ey; + E1 is nilpotent, so 0 = (2E;; + E12)? =
4F41 4 2E12. This shows that 2 =0 in R. For A € M,(R), write A=FE+ B
where E? = F and B? = 0. Then A = (1+ E) + (1 + B) is a sum of an
idempotent and an involution.

(5) = (4) By Lemma 3.1, M,,(R) = A x B, where 8 =0 in A and B is zero
or a subdirect product of Zs’s. Thus, there exists a central idempotent e of
R such that A = M, (eR) and B = M, ((1 —e)R). As n > 2, it follows from
Lemma 3.1 that ¢ = 1, so 8 = 0 in M,(R). As Ej2 € M, (R) is nilpotent,
(E12)? 4 2E5 = 0, showing that 2 = 0 in R. For A € M,,(R), write A = E+V
where E2 = F and V2 = 1. Then A = (1 + E) + (1 + V) is a sum of an
idempotent and a square-zero element.

(4) = (3) If 22 = 0 in R, then xE; + E15 € M, (R) is nilpotent; so
xE1s = (xE11 + E12)? = 0, showing x = 0. Hence R is a reduced ring. As
M, (R) is nil-clean, R is Boolean by [6, Corollary 6.3]. Assume that n > 2.
Then, as E1p + Fa3 € M, (R) is nilpotent, Eo3 = (E12 + E23)? = 0. This
contradictions shows that n = 2.

(3) = (5) By [6, Corollary 6.3], R is nil-clean. By Lemma 3.1, it suffices
to show that A? = 0 for any nilpotent matrix A in My(R). Let A= (24) be
nilpotent in My (R). Then the determinant of A must be zero, so ad = be. We
have A% = ( &fbe abtbd) “and

ac+cd betd

43— a+bc-d ab+b-ad+ bc+ bd
“ \ac+bec+c-ad+cd a-bc+d
_ a+ ad ab + be + be + bd
“ \ac+be+bc+cd ad+d

_(a+bc ab+bd _p2
“\ac+ecd be+d ) T

It follows that A% = 0. O
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Example 3.7. Zg is an involution-clean ring, but 2 is not a sum of an idem-
potent and a square-zero element. The trivial extension Z, o Z,4 is not an
involution-clean, but is a nil-clean ring with index of nilpotency < 2.
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