Commun. Korean Math. Soc. 33 (2018), No. 3, pp. 751-757

 $\frac{\text{https://doi.org/}10.4134/\text{CKMS.c170308}}{\text{pISSN: }1225\text{-}1763\text{ / eISSN: }2234\text{-}3024}$

NIL-CLEAN RINGS OF NILPOTENCY INDEX AT MOST TWO WITH APPLICATION TO INVOLUTION-CLEAN RINGS

YU LI, XIAOSHAN QUAN, AND GUOLI XIA

ABSTRACT. A ring is nil-clean if every element is a sum of a nilpotent and an idempotent, and a ring is involution-clean if every element is a sum of an involution and an idempotent. In this paper, a description of nil-clean rings of nilpotency index at most 2 is obtained, and is applied to improve a known result on involution-clean rings.

1. Introduction

Throughout this paper we assume that rings have an identity and the subrings share the same identity. For a ring R, the Jacobson radical and the set of nilpotents of a ring R are denoted by J(R) and $\mathrm{Nil}(R)$, respectively. Recently, involution-clean rings were introduced in [3] where the author proved that the structure of an involution-clean ring is reduced to a nil-clean ring R such that $a^2 + 2a = 0$ for all $a \in \mathrm{Nil}(R)$ (see Lemma 3.1). In this paper, we target this class of nil-clean rings, and relate them to nil-clean rings of nilpotency index at most 2. We prove a description of nil-clean rings of nilpotency index at most 2, and use it to further describe involution-clean rings.

As usual, $\mathbb{M}_n(R)$ stands for the $n \times n$ matrix ring over R and $\mathbb{T}_n(R)$ for the $n \times n$ (upper) triangular matrix ring over R. We write \mathbb{Z}_n for the ring of integers modulo n. An element a in a ring R is called an involution if $a^2 = 1$. A reduced ring is a ring without nonzero nilpotents. A ring is said to be of nilpotency index at most n if $a^n = 0$ for all $a \in \text{Nil}(R)$.

Received July 25, 2017; Accepted September 6, 2017.

²⁰¹⁰ Mathematics Subject Classification. Primary 16U60.

Key words and phrases. idempotent, nilpotent, involution, nil-clean ring of nilpotency index at most 2, involution-clean ring.

This work was supported by the National Natural Science Foundation of China(11661014, 11461010, 11661013), the Guangxi Science Research and Technology Development Project(1599005-2-13), the Guangxi Natural Science Foundation(2016GXSFDA380017) and the Scientific Research Fund of Guangxi Education Department(KY2015ZD075).

2. Nil-clean rings of nilpotency index at most 2

Following Diesl [4], a ring R is nil-clean if every element of R is a sum of a nilpotent and an idempotent. One easily sees that a ring R is Boolean if and only if R is a nil-clean ring of nilpotency index 1. In this section, we describe nil-clean rings of nilpotency index at most 2. Notice that the structure of a general nil-clean ring is, so far, unknown.

Lemma 2.1. The following are equivalent for a ring R:

- (1) Every element of R is a sum of an idempotent and a square-zero element.
- (2) R is nil-clean of nilpotency index ≤ 2 .
- (3) R/J(R) is nil-clean of nilpotency index ≤ 2 , and $a^2 = 0$ for all $a \in J(R) \cup Nil(R)$.

Proof. (1) \Rightarrow (2). It suffices to show that $a^{n+1} = 0$ whenever $a^{n+2} = 0$ in R for $n \geq 1$. Write 1 + a = b + e where $b^2 = 0$ and $e^2 = e$. Let f = 1 - e. Then f + a = b, so

$$0 = (f+a)^2 = f + fa + af + a^2.$$

Thus, $0=(f+fa+af+a^2)a^{n+1}=fa^{n+1}+afa^{n+1}=(1+a)fa^{n+1}$, so $fa^{n+1}=0$ (as 1+a is a unit). Hence $0=(f+fa+af+a^2)a^n=fa^n+afa^n=(1+a)fa^n$, so $fa^n=0$. Thus, $0=(f+fa+af+a^2)a^{n-1}=fa^{n-1}+afa^{n-1}+a^{n+1}=(1+a)fa^{n-1}+a^{n+1}$, so $0=a[(1+a)fa^{n-1}+a^{n+1}]=(1+a)afa^{n-1}$, and hence $afa^{n-1}=0$. It follows that $fa^{n-1}+a^{n+1}=0$. So $0=f[fa^{n-1}+a^{n+1}]=fa^{n-1}+fa^{n+1}=fa^{n-1}$. It follows that $a^{n+1}=0$.

 $(2) \Rightarrow (3) \Rightarrow (1)$. The implications are clear in view of [4, Corollary 3.17]. \square

Let $(r_{\alpha}) \in \prod \{R_{\alpha} : \alpha \in \Gamma\}$. The support of (r_{α}) is the subset $\Lambda = \{\alpha \in \Gamma : r_{\alpha} \neq 0\}$. We will denote (r_{α}) by $(r_{\alpha})_{\Lambda}$. Here is a description of a nil-clean ring of nilpotentcy index ≤ 2 .

Theorem 2.2. A ring R is a nil-clean ring of nilpotency index ≤ 2 if and only if $a^2 = 0$ for all $a \in J(R) \cup \operatorname{Nil}(R)$ and R/J(R) is a subdirect product of rings $\{R_{\alpha} : \alpha \in \Gamma\}$, where $R_{\alpha} = \mathbb{Z}_2$ or $\mathbb{M}_2(\mathbb{Z}_2)$, such that whenever $(x_{\alpha})_{\Lambda} \in R/J(R)$ with $x_{\alpha}^3 = 1$ and $x_{\alpha} \neq 1$ for all $\alpha \in \Lambda$, there exists $(y_{\alpha})_{\Lambda} \in R/J(R)$ with $y_{\alpha} \neq 0$ and $y_{\alpha}^2 = 0$ for all $\alpha \in \Lambda$.

Proof. (\Rightarrow) By Lemmas 2.1, $a^2=0$ for all $a\in J(R)\cup \mathrm{Nil}(R)$. Moreover, R/J(R) is nil-clean of nilpotentcy index ≤ 2 . So, by [1, Theorem 1], R/J(R) is a subdirect product of prime rings $\{R_\alpha:\alpha\in\Lambda\}$ of nilpotency index ≤ 2 . Hence, by [2, Corollary 6], for each α , $R_\alpha\cong\mathbb{M}_n(D)$ where D is a division ring and $n\leq 2$. As $\mathbb{M}_n(D)$ is still nil-clean, $D=\mathbb{Z}_2$ by [5, Theorem 3]. So $R_\alpha\cong\mathbb{Z}_2$ or $R_\alpha\cong\mathbb{M}_2(\mathbb{Z}_2)$. Identify R/J(R) as a subring of $\prod_\Gamma R_\alpha$.

If R/J(R) contains an element $x := (x_{\alpha})_{\Lambda}$ where $1 \neq x_{\alpha} \in R_{\alpha}$ with $x_{\alpha}^{3} = 1$ for all $\alpha \in \Lambda$, then, as x is nil-clean in R/J(R), there exists a nilpotent $y \in R/J(R)$ such that x + y is an idempotent. Write $y = (y_{\alpha})$ where $y_{\alpha} \in R_{\alpha}$. It must be that $y_{\alpha} = 0$ for $\alpha \in \Gamma \setminus \Lambda$ and $y_{\alpha} \neq 0$ for $\alpha \in \Lambda$. So $y = (y_{\alpha})_{\Lambda}$.

 (\Leftarrow) We only need to show that R is nil-clean. As J(R) is nil, it suffices to show that R/J(R) is nil-clean by [4, Corollary 3.17]. Regard R/J(R) as a subring of $\prod_{r} R_{\alpha}$.

Let $x \in R/J(R)$. Write $x = (x_{\alpha})$ where $x_{\alpha} \in R_{\alpha}$. In R_{α} , there are four types of elements $b \colon b^2 = 0$; $b^2 = b$; $b^2 = 1$ with $b \neq 1$; $b^3 = 1$ with $b \neq 1$. Thus, we can write Γ as a disjoint union of $\Lambda_1, \Lambda_2, \Lambda_3$ and Λ_4 such that $x_{\alpha}^2 = 0$ if and only if $\alpha \in \Lambda_1$; $x_{\alpha}^2 = x_{\alpha}$ if and only if $\alpha \in \Lambda_2$; $x_{\alpha}^2 = 1$ with $x_{\alpha} \neq 1$ if and only if $\alpha \in \Lambda_3$; $x_{\alpha}^3 = 1$ with $x_{\alpha} \neq 1$ if and only if $\alpha \in \Lambda_4$. Without loss of generality, we can denote $x = (x_{\alpha}) = ((x_{\alpha})_{\Lambda_1}, (x_{\alpha})_{\Lambda_2}, (x_{\alpha})_{\Lambda_3}, (x_{\alpha})_{\Lambda_4})$. We have

$$\begin{aligned} x + x^7 &= \left((x_\alpha)_{\Lambda_1}, \mathbf{0}, \mathbf{0}, \mathbf{0} \right), \\ x^2 + x^5 &= \left(\mathbf{0}, \mathbf{0}, \mathbf{1} + (x_\alpha)_{\Lambda_3}, \mathbf{0} \right), \\ \left(x^2 + x^5 + x^6 + x^7 \right)^2 &= \left(\mathbf{0}, \mathbf{0}, \mathbf{0}, (x_\alpha)_{\Lambda_4} \right). \end{aligned}$$

So $(x_{\alpha})_{\Lambda_4} \in R/J(R)$. By our assumption, there exists $(y_{\alpha})_{\Lambda_4} \in R/J(R)$ with $y_{\alpha} \neq 0$ and $y_{\alpha}^2 = 0$ for all $\alpha \in \Lambda_4$. One can check that $(x_{\alpha})_{\Lambda_4} + (y_{\alpha})_{\Lambda_4} \in R/J(R)$ is an idempotent. We see that

$$y := ((x_{\alpha})_{\Lambda_{1}}, \mathbf{0}, \mathbf{1} + (x_{\alpha})_{\Lambda_{3}}, (y_{\alpha})_{\Lambda_{4}})$$

$$= ((x_{\alpha})_{\Lambda_{1}}, \mathbf{0}, \mathbf{0}, \mathbf{0}) + (\mathbf{0}, \mathbf{0}, \mathbf{1} + (x_{\alpha})_{\Lambda_{3}}, \mathbf{0}) + (\mathbf{0}, \mathbf{0}, \mathbf{0}, (y_{\alpha})_{\Lambda_{4}}) \in R/J(R)$$

is nilpotent, and

$$\left(\mathbf{0},(x_{\alpha})_{\Lambda_{2}},\mathbf{1},(x_{\alpha})_{\Lambda_{4}}+(y_{\alpha})_{\Lambda_{4}}\right)=x+y\in R/J(R)$$

is an idempotent. Therefore, x=y+(x+y) is nil-clean in R/J(R). So R/J(R) is nil-clean. \Box

Corollary 2.3. If $R/J(R) \cong S \bigoplus (\prod M_2(\mathbb{Z}_2))$ for a Boolean ring S with J(R) nil such that $a^2 = 0$ for all $a \in Nil(R)$, then R is nil-clean of nilpotency index ≤ 2 .

A subdirect product of a Boolean ring and a family of copies of $\mathbb{M}_2(\mathbb{Z}_2)$ need not be a nil-clean ring.

Example 2.4. Let $T = \prod_{n=1}^{\infty} R_i$ where $R_i = \mathbb{M}_2(\mathbb{Z}_2)$ for all $i \geq 1$. Let $z = (z_i) \in T$ where $z_i = \left(\begin{smallmatrix} 0 & 1 \\ 1 & 1 \end{smallmatrix}\right) \in \mathbb{M}_2(\mathbb{Z}_2)$. Let S be the subring of T generated by z, i.e., $S = \{0, 1, z, 1 + z\}$ where $z^2 = 1 + z$. Let $R = \left(\bigoplus_{i=1}^{\infty} R_i\right) + S$. Then R is a subdirect product of $\{R_i\}$, so J(R) = 0 and R has nilpotency index 2. However, although R contains z, R does not contain a nilpotent (y_i) with $y_i \neq 0$ for all $i \geq 1$. So R is not nil-clean by Theorem 2.2.

In general, it is unknown whether R nil-clean implies that the corner ring $eRe\ (e^2=e\in R)$ is nil-clean (see [4, Question 2]). But we have:

Corollary 2.5. If R is a nil-clean ring of nilpotency index at most 2, then so is eRe for all $e^2 = e \in R$.

Proof. Let S = eRe. Then $J(S) = eJ(R)e \subseteq J(R)$ and $Nil(S) \subseteq Nil(R)$. Since R is a nil-clean ring of nilpotency index at most 2, $a^2 = 0$ for all $a \in$ $J(R) \cup Nil(R)$ by Theorem 2.2, so $a^2 = 0$ for all $a \in J(S) \cup Nil(S)$. Moreover, $\overline{R} := R/J(R)$ is a subdirect product of $\{R_{\alpha} : \alpha \in \Gamma\}$ where either $R_{\alpha} \cong \mathbb{Z}_2$ or $R_{\alpha} \cong \mathbb{M}_2(\mathbb{Z}_2)$. That is, \overline{R} is a subring of $\prod R_{\alpha}$ such that $\pi_{\alpha}(\overline{R}) = R_{\alpha}$ where $\pi_{\alpha}: \prod R_{\alpha} \to R_{\alpha}$ is the natural projection for all $\alpha \in \Gamma$. Let $\bar{e} = e + J(R) \in \overline{R}$. Write $\bar{e} = (e_{\alpha})$ where $e_{\alpha} \in R_{\alpha}$ is an idempotent. It is easily seen that $\bar{e}R\bar{e}$ is a subring of $\prod e_{\alpha}R_{\alpha}e_{\alpha}$ with $\pi_{\alpha}(\bar{e}\overline{R}\bar{e})=e_{\alpha}R_{\alpha}e_{\alpha}$ for all α . That is, $\bar{e}R\bar{e}$ is a subdirect product of $\{e_{\alpha}R_{\alpha}e_{\alpha}\}$. We notice that, if $R_{\alpha} \cong \mathbb{Z}_2$, then $e_{\alpha}R_{\alpha}e_{\alpha}=0$ or $e_{\alpha}R_{\alpha}e_{\alpha}\cong\mathbb{Z}_2$, and that, if $R_{\alpha}\cong\mathbb{M}_2(\mathbb{Z}_2)$, then $e_{\alpha}R_{\alpha}e_{\alpha}=0$, or $e_{\alpha}R_{\alpha}e_{\alpha}\cong\mathbb{Z}_2$, or $e_{\alpha}R_{\alpha}e_{\alpha}\cong \mathbb{M}_{2}(\mathbb{Z}_{2})$ (this only occurs when e_{α} is the identity of R_{α}). Suppose that $x = (x_{\alpha})_{\Lambda} \in \overline{eRe}$ where $e_{\alpha} \neq x_{\alpha} \in e_{\alpha}R_{\alpha}e_{\alpha}$ with $x_{\alpha}^{3} = e_{\alpha}$ for all $\alpha \in \Lambda$. It must be that, for each $\alpha \in \Lambda$, $R_{\alpha} \cong M_{2}(\mathbb{Z}_{2})$ and $e_{\alpha} = 1_{R_{\alpha}}$. Then, by Theorem 2.2, there exists $y = (y_{\alpha})_{\Lambda} \in \overline{R}$ such that $y_{\alpha} \neq 0$ and $y_{\alpha}^{2} = 0$. But $y = \bar{e}y\bar{e} \in \bar{e}R\bar{e}$. Note that $S/J(S) = eRe/eJ(R)e = eRe/(eRe \cap J(R)) \cong$ $(eRe + J(R))/J(R) = \overline{eRe}$. Hence, by Theorem 2.2, S is a nil-clean ring of nilpotency index at most 2.

A ring R is strongly π -regular if for each $a \in R$, there exists $n \ge 1$ such that $a^n \in a^{n+1}R \cap Ra^{n+1}$. It is unknown whether every nil-clean ring is strongly π -regular (see [4, Question]). However, every nil-clean ring of nilpotency index at most 2 is certainly strongly π -regular.

Corollary 2.6. If R is nil-clean of nilpotency index ≤ 2 , then R is strongly π -regular.

Proof. If $a \in J(R)$, then $a^2 = 0$. Suppose that $a \notin J(R)$. Let $x = \bar{a} \in R/J(R)$. As in the proof of Theorem 2.2, $x = (x_{\alpha}) = ((x_{\alpha})_{\Lambda_1}, (x_{\alpha})_{\Lambda_2}, (x_{\alpha})_{\Lambda_3}, (x_{\alpha})_{\Lambda_4})$. Moreover, $x + x^7 = ((x_{\alpha})_{\Lambda_1}, \mathbf{0}, \mathbf{0}, \mathbf{0})$, so $(x + x^7)^2 = \bar{0}$, i.e., $(a + a^7)^2 \in J(R)$. Hence, $a^4(1+a^6)^4 = (a+a^7)^4 = ((a+a^7)^2)^2 = 0$, showing that $a^4 \in a^5R \cap Ra^5$. So *R* is strongly π-regular. □

3. Involution-clean rings

Following Danchev [3], a ring is an involution-clean ring if every element is a sum of an idempotent and an involution. The following result is proved in [3].

Lemma 3.1 ([3]). A ring R is an involution-clean ring if and only if $R = A \times B$, where A is a nil-clean ring with $a^2 + 2a = 0$ for all $a \in Nil(A)$ and B is zero or a subdirect product of \mathbb{Z}_3 's.

Next, we give a further description of the ring A in the decomposition in Lemma 3.1.

Lemma 3.2. A ring R is nil-clean with $a^2 + 2a = 0$ for all $a \in Nil(R)$ if and only if R/J(R) is nil-clean of nilpotency index ≤ 2 , J(R) nil and $a^2 + 2a = 0$ for all $a \in Nil(R)$.

Proof. In view of [4, Proposition 3.14 and Corollary 3.17], we see that

R is nil-clean with $a^2 + 2a = 0$ for all $a \in Nil(R)$

 $\iff R/J(R)$ is nil-clean with J(R) nil and with $a^2 + 2a = 0$ for all $a \in Nil(R)$ $\iff R/J(R)$ is nil-clean of nilpotency index ≤ 2 , J(R) nil and

$$a^2 + 2a = 0$$
 for all $a \in Nil(R)$.

Theorem 3.3. A ring R is an involution-clean ring if and only if $R \cong A \times B$, where

- (1) B is zero or a subdirect product of \mathbb{Z}_3 's.
- (2) J(A) is nil, $a^2 + 2a = 0$ for all $a \in Nil(A)$, and A/J(A) is a subdirect product of rings $\{A_{\alpha} : \alpha \in \Gamma\}$, where $A_{\alpha} = \mathbb{Z}_2$ or $\mathbb{M}_2(\mathbb{Z}_2)$, such that whenever $(x_{\alpha})_{\Lambda} \in A/J(A)$ with $x_{\alpha}^3 = 1$ and $x_{\alpha} \neq 1$ for all $\alpha \in \Lambda$, there exists $(y_{\alpha})_{\Lambda} \in A/J(A)$ with $y_{\alpha} \neq 0$ and $y_{\alpha}^2 = 0$ for all $\alpha \in \Lambda$.

Proof. This is by Lemmas 3.1, 3.2 and Theorem 2.2.

Corollary 3.4. If $R/J(R) \cong S \bigoplus (\prod M_2(\mathbb{Z}_2))$ for a Boolean ring S with J(R) nil such that $a^2 + 2a = 0$ for all $a \in Nil(R)$, then R is an involution-clean ring.

As seen in Example 2.4, a subdirect product of a Boolean ring and a family of copies of $M_2(\mathbb{Z}_2)$ need not be an involution-clean ring.

Next we determine when a (formal or triangular) matrix ring is involutionclean.

Proposition 3.5. Let S, T be rings and M a non-trivial (S, T)-bimodule. Then the formal matrix ring $\begin{pmatrix} S & M \\ 0 & T \end{pmatrix}$ is an involution-clean ring if and only if S, T are involution-clean rings and Nil(S)M = MNil(T) = 2M = 0.

Proof. (\Rightarrow) If $x \in M$, then $\begin{pmatrix} 0 & x \\ 0 & 0 \end{pmatrix}^2 + 2 \begin{pmatrix} 0 & x \\ 0 & 0 \end{pmatrix} = 0$, and this shows that 2x = 0. Hence 2M = 0. Let $a \in \text{Nil}(S)$ an $x \in M$. Then $\begin{pmatrix} a & x \\ 0 & 0 \end{pmatrix}^2 + 2 \begin{pmatrix} a & x \\ 0 & 0 \end{pmatrix} = 0$, and this shows that ax = -2x = 0. So Nil(S)M = 0. Similarly MNil(T) = 0. As images of $\begin{pmatrix} S & M \\ 0 & T \end{pmatrix}$, S and T are clearly involution-clean rings.

(\Leftarrow) We write $S=A\oplus A'$ and $T=B\oplus B'$ where 8=0 in A and in $B, A'\oplus B'$ is zero or a subdirect product of \mathbb{F}_3 's. Write $1_S=1_A+1_{A'}$ and $1_T=1_B+1_{B'}$. From 2M=0, one deduces that $1_{A'}M=0$ and $M1_{B'}=0$, and that $1_Ax=x1_B=x$ for all $x\in M$. Therefore,

$$\begin{pmatrix} S & M \\ 0 & T \end{pmatrix} \cong \begin{pmatrix} A & M \\ 0 & B \end{pmatrix} \times A' \times B'.$$

Thus, we only need to show that $\begin{pmatrix} A & M \\ 0 & B \end{pmatrix}$ is an involution-ring. Let $\begin{pmatrix} a & x \\ 0 & b \end{pmatrix} \in \begin{pmatrix} A & M \\ 0 & B \end{pmatrix}$. Write a = e + v and b = f + w where $e^2 = e$, $v^2 = 1$, $f^2 = f$ and $w^2 = 1$. Then $(1 + v)^2 = 2(1 + v) \in J(A)$, so (1 + v)x = 0. Similarly, x(1 + w) = 0. Thus vx + xw = (1 + v)x + x(1 + w) - 2x = 0, so $\begin{pmatrix} a & x \\ 0 & b \end{pmatrix} = \begin{pmatrix} e & 0 \\ 0 & f \end{pmatrix} + \begin{pmatrix} v & x \\ 0 & w \end{pmatrix}$ is a sum of an idempotent and an involution.

Theorem 3.6. Let R be a ring and $n \ge 2$. The following are equivalent:

- (1) $\mathbb{T}_n(R)$ is an involution-clean ring.
- (2) $\mathbb{T}_n(R)$ is a nil-clean ring of nilpotentcy index ≤ 2 .
- (3) n=2 and R is Boolean.
- (4) $\mathbb{M}_n(R)$ is a nil-clean ring of nilpotency index ≤ 2 .
- (5) $\mathbb{M}_n(R)$ is an involution-clean ring.
- Proof. (1) \Rightarrow (3) Write $\mathbb{T}_n(R) = \binom{S}{0} \frac{M}{R}$, where $S = \mathbb{T}_{n-1}(R)$ and $M = \mathbb{M}_{(n-1)\times 1}(R)$. By Proposition 3.5, 2 = 0 in R and $\mathrm{Nil}(S)M = 0$, from which we deduce that n = 2 and R is a reduced ring. As an image of $\mathbb{T}_2(R)$, R is involution-clean. Thus, R is a subdirect product of involution-clean domains in which 2 is zero. One easily sees that each of the domains is isomorphic to \mathbb{Z}_2 , so R is Boolean.
- $(3) \Rightarrow (2)$ Let $\begin{pmatrix} a & b \\ 0 & c \end{pmatrix} \in \mathbb{T}_2(R)$. Then $\begin{pmatrix} a & b \\ 0 & c \end{pmatrix} = \begin{pmatrix} a & 0 \\ 0 & c \end{pmatrix} + \begin{pmatrix} 0 & b \\ 0 & 0 \end{pmatrix}$ is a sum of an idempotent and a square-zero element.
- $(2) \Rightarrow (1)$ As $2 \in \text{Nil}(R)$, $2E_{11} + E_{12}$ is nilpotent, so $0 = (2E_{11} + E_{12})^2 = 4E_{11} + 2E_{12}$. This shows that 2 = 0 in R. For $A \in \mathbb{M}_n(R)$, write A = E + B where $E^2 = E$ and $B^2 = 0$. Then A = (1 + E) + (1 + B) is a sum of an idempotent and an involution.
- $(5)\Rightarrow (4)$ By Lemma 3.1, $\mathbb{M}_n(R)\cong A\times B$, where 8=0 in A and B is zero or a subdirect product of \mathbb{Z}_3 's. Thus, there exists a central idempotent e of R such that $A\cong \mathbb{M}_n(eR)$ and $B\cong \mathbb{M}_n((1-e)R)$. As $n\geq 2$, it follows from Lemma 3.1 that e=1, so 8=0 in $\mathbb{M}_n(R)$. As $E_{12}\in \mathbb{M}_n(R)$ is nilpotent, $(E_{12})^2+2E_{12}=0$, showing that 2=0 in R. For $A\in \mathbb{M}_n(R)$, write A=E+V where $E^2=E$ and $V^2=1$. Then A=(1+E)+(1+V) is a sum of an idempotent and a square-zero element.
- $(4) \Rightarrow (3)$ If $x^2 = 0$ in R, then $xE_{11} + E_{12} \in \mathbb{M}_n(R)$ is nilpotent; so $xE_{12} = (xE_{11} + E_{12})^2 = 0$, showing x = 0. Hence R is a reduced ring. As $\mathbb{M}_n(R)$ is nil-clean, R is Boolean by [6, Corollary 6.3]. Assume that n > 2. Then, as $E_{12} + E_{23} \in \mathbb{M}_n(R)$ is nilpotent, $E_{23} = (E_{12} + E_{23})^2 = 0$. This contradictions shows that n = 2.
- $(3) \Rightarrow (5)$ By [6, Corollary 6.3], R is nil-clean. By Lemma 3.1, it suffices to show that $A^2=0$ for any nilpotent matrix A in $\mathbb{M}_2(R)$. Let $A=\left(\begin{smallmatrix} a&b\\c&d\end{smallmatrix}\right)$ be nilpotent in $\mathbb{M}_2(R)$. Then the determinant of A must be zero, so ad=bc. We have $A^2=\left(\begin{smallmatrix} a+bc&ab+bd\\ac+cd&bc+d\end{smallmatrix}\right)$, and

$$A^{3} = \begin{pmatrix} a+bc \cdot d & ab+b \cdot ad+bc+bd \\ ac+bc+c \cdot ad+cd & a \cdot bc+d \end{pmatrix}$$
$$= \begin{pmatrix} a+ad & ab+bc+bc+bd \\ ac+bc+bc+cd & ad+d \end{pmatrix}$$
$$= \begin{pmatrix} a+bc & ab+bd \\ ac+cd & bc+d \end{pmatrix} = A^{2}.$$

It follows that $A^2 = 0$.

Example 3.7. \mathbb{Z}_8 is an involution-clean ring, but 2 is not a sum of an idempotent and a square-zero element. The trivial extension $\mathbb{Z}_4 \propto \mathbb{Z}_4$ is not an involution-clean, but is a nil-clean ring with index of nilpotency ≤ 2 .

References

- E. P. Armendariz, On semiprime rings of bounded index, Proc. Amer. Math. Soc. 85 (1982), no. 2, 146–148.
- [2] K. I. Beidar, On rings with zero total, Beiträge Algebra Geom. 38 (1997), no. 2, 233–239.
- [3] P. V. Danchev, Invo-clean unital rings, Commun. Korean Math. Soc. 32 (2017), no. 1, 19–27.
- $[4]\,$ A. J. Diesl, $Nil\ clean\ rings,$ J. Algebra ${\bf 383}\ (2013),\,197{-}211.$
- [5] T. Kosan, T.-K. Lee, and Y. Zhou, When is every matrix over a division ring a sum of an idempotent and a nilpotent?, Linear Algebra Appl. 450 (2014), 7–12.
- [6] M. T. Kosan, Z. Wang, and Y. Zhou, Nil-clean and strongly nil-clean rings, J. Pure Appl. Algebra 220 (2016), no. 2, 633–646.

Yu Li

SCHOOL OF MATHEMATICS AND STATISTICS SOUTHWEST UNIVERSITY CHONGQING 400715, P. R. CHINA *Email address*: Liskyu@163.com

Xiaoshan Quan

SCHOOL OF MATHEMATICS AND STATISTICS GUANGXI TEACHERS EDUCATION UNIVERSITY NANNING, GUANGXI 530001, P. R. CHINA Email address: xiaoshanquan3@163.com

Guoli Xia

DEPARTMENT OF MATHEMATICS AND STATISTICS MEMORIAL UNIVERSITY OF NEWFOUNDLAND ST. JOHN'S, NL A1C 5S7, CANADA *Email address*: lingyou1991@163.com