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NIL-CLEAN RINGS OF NILPOTENCY INDEX

AT MOST TWO WITH APPLICATION TO

INVOLUTION-CLEAN RINGS

Yu Li, Xiaoshan Quan, and Guoli Xia

Abstract. A ring is nil-clean if every element is a sum of a nilpotent
and an idempotent, and a ring is involution-clean if every element is a

sum of an involution and an idempotent. In this paper, a description of

nil-clean rings of nilpotency index at most 2 is obtained, and is applied
to improve a known result on involution-clean rings.

1. Introduction

Throughout this paper we assume that rings have an identity and the sub-
rings share the same identity. For a ring R, the Jacobson radical and the set of
nilpotents of a ring R are denoted by J(R) and Nil(R), respectively. Recently,
involution-clean rings were introduced in [3] where the author proved that the
structure of an involution-clean ring is reduced to a nil-clean ring R such that
a2 + 2a = 0 for all a ∈ Nil(R) (see Lemma 3.1). In this paper, we target this
class of nil-clean rings, and relate them to nil-clean rings of nilpotency index at
most 2. We prove a description of nil-clean rings of nilpotency index at most
2, and use it to further describe involution-clean rings.

As usual, Mn(R) stands for the n × n matrix ring over R and Tn(R) for
the n × n (upper) triangular matrix ring over R. We write Zn for the ring of
integers modulo n. An element a in a ring R is called an involution if a2 = 1.
A reduced ring is a ring without nonzero nilpotents. A ring is said to be of
nilpotency index at most n if an = 0 for all a ∈ Nil(R).
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2. Nil-clean rings of nilpotency index at most 2

Following Diesl [4], a ring R is nil-clean if every element of R is a sum of a
nilpotent and an idempotent. One easily sees that a ring R is Boolean if and
only if R is a nil-clean ring of nilpotency index 1. In this section, we describe
nil-clean rings of nilpotency index at most 2. Notice that the structure of a
general nil-clean ring is, so far, unknown.

Lemma 2.1. The following are equivalent for a ring R:

(1) Every element of R is a sum of an idempotent and a square-zero ele-
ment.

(2) R is nil-clean of nilpotency index ≤ 2.
(3) R/J(R) is nil-clean of nilpotency index ≤ 2, and a2 = 0 for all a ∈

J(R) ∪Nil(R).

Proof. (1) ⇒ (2). It suffices to show that an+1 = 0 whenever an+2 = 0 in R
for n ≥ 1. Write 1 + a = b+ e where b2 = 0 and e2 = e. Let f = 1− e. Then
f + a = b, so

0 = (f + a)2 = f + fa+ af + a2.

Thus, 0 = (f+fa+af+a2)an+1 = fan+1+afan+1 = (1+a)fan+1, so fan+1 =
0 (as 1+a is a unit). Hence 0 = (f+fa+af+a2)an = fan+afan = (1+a)fan,
so fan = 0. Thus, 0 = (f + fa + af + a2)an−1 = fan−1 + afan−1 + an+1 =
(1+a)fan−1 +an+1, so 0 = a[(1+a)fan−1 +an+1] = (1+a)afan−1, and hence
afan−1 = 0. It follows that fan−1 + an+1 = 0. So 0 = f [fan−1 + an+1] =
fan−1 + fan+1 = fan−1. It follows that an+1 = 0.

(2)⇒ (3)⇒ (1). The implications are clear in view of [4, Corollary 3.17]. �

Let (rα) ∈
∏
{Rα : α ∈ Γ}. The support of (rα) is the subset Λ = {α ∈ Γ :

rα 6= 0}. We will denote (rα) by (rα)
Λ

. Here is a description of a nil-clean ring
of nilpotentcy index ≤ 2.

Theorem 2.2. A ring R is a nil-clean ring of nilpotency index ≤ 2 if and only
if a2 = 0 for all a ∈ J(R) ∪Nil(R) and R/J(R) is a subdirect product of rings
{Rα : α ∈ Γ}, where Rα = Z2 or M2(Z2), such that whenever (xα)

Λ
∈ R/J(R)

with x3
α = 1 and xα 6= 1 for all α ∈ Λ, there exists (yα)

Λ
∈ R/J(R) with yα 6= 0

and y2
α = 0 for all α ∈ Λ.

Proof. (⇒) By Lemmas 2.1, a2 = 0 for all a ∈ J(R) ∪ Nil(R). Moreover,
R/J(R) is nil-clean of nilpotentcy index ≤ 2. So, by [1, Theorem 1], R/J(R)
is a subdirect product of prime rings {Rα : α ∈ Λ} of nilpotency index ≤ 2.
Hence, by [2, Corollary 6], for each α, Rα ∼= Mn(D) where D is a division ring
and n ≤ 2. As Mn(D) is still nil-clean, D = Z2 by [5, Theorem 3]. So Rα ∼= Z2

or Rα ∼= M2(Z2). Identify R/J(R) as a subring of
∏

Γ
Rα.

If R/J(R) contains an element x := (xα)Λ where 1 6= xα ∈ Rα with x3
α = 1

for all α ∈ Λ, then, as x is nil-clean in R/J(R), there exists a nilpotent y ∈
R/J(R) such that x + y is an idempotent. Write y = (yα) where yα ∈ Rα. It
must be that yα = 0 for α ∈ Γ\Λ and yα 6= 0 for α ∈ Λ. So y = (yα)

Λ
.
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(⇐) We only need to show that R is nil-clean. As J(R) is nil, it suffices
to show that R/J(R) is nil-clean by [4, Corollary 3.17]. Regard R/J(R) as a
subring of

∏
Γ
Rα.

Let x ∈ R/J(R). Write x = (xα) where xα ∈ Rα. In Rα, there are four
types of elements b : b2 = 0; b2 = b; b2 = 1 with b 6= 1; b3 = 1 with b 6= 1.
Thus, we can write Γ as a disjoint union of Λ1,Λ2,Λ3 and Λ4 such that x2

α = 0
if and only if α ∈ Λ1; x2

α = xα if and only if α ∈ Λ2; x2
α = 1 with xα 6= 1 if

and only if α ∈ Λ3; x3
α = 1 with xα 6= 1 if and only if α ∈ Λ4. Without loss

of generality, we can denote x = (xα) =
(
(xα)Λ1

, (xα)Λ2
, (xα)Λ3

, (xα)
Λ4

)
. We

have

x+ x7 =
(
(xα)Λ1

,0,0,0
)
,

x2 + x5 =
(
0,0,1 + (xα)

Λ3
,0
)
,(

x2 + x5 + x6 + x7
)2

=
(
0,0,0, (xα)Λ4

)
.

So (xα)
Λ4
∈ R/J(R). By our assumption, there exists (yα)

Λ4
∈ R/J(R) with

yα 6= 0 and y2
α = 0 for all α ∈ Λ4. One can check that (xα)

Λ4
+(yα)

Λ4
∈ R/J(R)

is an idempotent. We see that

y :=
(
(xα)

Λ1
,0,1 + (xα)

Λ3
, (yα)

Λ4

)
=
(
(xα)

Λ1
,0,0,0

)
+
(
0,0,1 + (xα)

Λ3
,0
)

+
(
0,0,0, (yα)

Λ4

)
∈ R/J(R)

is nilpotent, and(
0, (xα)

Λ2
,1, (xα)

Λ4
+ (yα)

Λ4

)
= x+ y ∈ R/J(R)

is an idempotent. Therefore, x = y+(x+y) is nil-clean in R/J(R). So R/J(R)
is nil-clean. �

Corollary 2.3. If R/J(R) ∼= S
⊕(∏

M2(Z2)
)
for a Boolean ring S with J(R)

nil such that a2 = 0 for all a ∈ Nil(R), then R is nil-clean of nilpotency index
≤ 2.

A subdirect product of a Boolean ring and a family of copies of M2(Z2) need
not be a nil-clean ring.

Example 2.4. Let T =
∏∞
n=1Ri where Ri = M2(Z2) for all i ≥ 1. Let

z = (zi) ∈ T where zi = ( 0 1
1 1 ) ∈ M2(Z2). Let S be the subring of T generated

by z, i.e., S = {0, 1, z, 1 + z} where z2 = 1 + z. Let R =
(⊕∞

i=1Ri
)

+S. Then
R is a subdirect product of {Ri}, so J(R) = 0 and R has nilpotency index
2. However, although R contains z, R does not contain a nilpotent (yi) with
yi 6= 0 for all i ≥ 1. So R is not nil-clean by Theorem 2.2.

In general, it is unknown whether R nil-clean implies that the corner ring
eRe (e2 = e ∈ R) is nil-clean (see [4, Question 2]). But we have:

Corollary 2.5. If R is a nil-clean ring of nilpotency index at most 2, then so
is eRe for all e2 = e ∈ R.
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Proof. Let S = eRe. Then J(S) = eJ(R)e ⊆ J(R) and Nil(S) ⊆ Nil(R).
Since R is a nil-clean ring of nilpotency index at most 2, a2 = 0 for all a ∈
J(R) ∪Nil(R) by Theorem 2.2, so a2 = 0 for all a ∈ J(S) ∪Nil(S). Moreover,
R := R/J(R) is a subdirect product of {Rα : α ∈ Γ} where either Rα ∼= Z2 or
Rα ∼= M2(Z2). That is, R is a subring of

∏
Rα such that πα(R) = Rα where

πα :
∏
Rα → Rα is the natural projection for all α ∈ Γ. Let ē = e+J(R) ∈ R.

Write ē = (eα) where eα ∈ Rα is an idempotent. It is easily seen that ēRē is
a subring of

∏
eαRαeα with πα(ēRē) = eαRαeα for all α. That is, ēRē is a

subdirect product of {eαRαeα}. We notice that, if Rα ∼= Z2, then eαRαeα = 0
or eαRαeα ∼= Z2, and that, ifRα ∼= M2(Z2), then eαRαeα = 0, or eαRαeα ∼= Z2,
or eαRαeα ∼= M2(Z2) (this only occurs when eα is the identity of Rα). Suppose
that x = (xα)Λ ∈ ēRē where eα 6= xα ∈ eαRαeα with x3

α = eα for all α ∈ Λ.
It must be that, for each α ∈ Λ, Rα ∼= M2(Z2) and eα = 1Rα

. Then, by
Theorem 2.2, there exists y = (yα)Λ ∈ R such that yα 6= 0 and y2

α = 0. But
y = ēyē ∈ ēRē. Note that S/J(S) = eRe/eJ(R)e = eRe/(eRe ∩ J(R)) ∼=
(eRe + J(R))/J(R) = ēRē. Hence, by Theorem 2.2, S is a nil-clean ring of
nilpotency index at most 2. �

A ring R is strongly π-regular if for each a ∈ R, there exists n ≥ 1 such that
an ∈ an+1R ∩ Ran+1. It is unknown whether every nil-clean ring is strongly
π-regular (see [4, Question ]). However, every nil-clean ring of nilpotency index
at most 2 is certainly strongly π-regular.

Corollary 2.6. If R is nil-clean of nilpotency index ≤ 2, then R is strongly
π-regular.

Proof. If a ∈ J(R), then a2 = 0. Suppose that a /∈ J(R). Let x = ā ∈ R/J(R).
As in the proof of Theorem 2.2, x = (xα) =

(
(xα)

Λ1
, (xα)

Λ2
, (xα)

Λ3
, (xα)

Λ4

)
.

Moreover, x + x7 =
(
(xα)Λ1

,0,0,0
)
, so (x + x7)2 = 0̄, i.e., (a + a7)2 ∈ J(R).

Hence, a4(1+a6)4 = (a+a7)4 = ((a+a7)2)2 = 0, showing that a4 ∈ a5R∩Ra5.
So R is strongly π-regular. �

3. Involution-clean rings

Following Danchev [3], a ring is an involution-clean ring if every element is
a sum of an idempotent and an involution. The following result is proved in
[3].

Lemma 3.1 ([3]). A ring R is an involution-clean ring if and only if R = A×B,
where A is a nil-clean ring with a2 + 2a = 0 for all a ∈ Nil(A) and B is zero
or a subdirect product of Z3’s.

Next, we give a further description of the ring A in the decomposition in
Lemma 3.1.

Lemma 3.2. A ring R is nil-clean with a2 + 2a = 0 for all a ∈ Nil(R) if and
only if R/J(R) is nil-clean of nilpotency index ≤ 2, J(R) nil and a2 + 2a = 0
for all a ∈ Nil(R).
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Proof. In view of [4, Proposition 3.14 and Corollary 3.17], we see that

R is nil-clean with a2 + 2a = 0 for all a ∈ Nil(R)

⇐⇒R/J(R) is nil-clean with J(R) nil and with a2 + 2a = 0 for all a ∈ Nil(R)

⇐⇒R/J(R) is nil-clean of nilpotency index ≤ 2, J(R) nil and

a2 + 2a = 0 for all a ∈ Nil(R). �

Theorem 3.3. A ring R is an involution-clean ring if and only if R ∼= A×B,
where

(1) B is zero or a subdirect product of Z3’s.
(2) J(A) is nil, a2 + 2a = 0 for all a ∈ Nil(A), and A/J(A) is a subdirect

product of rings {Aα : α ∈ Γ}, where Aα = Z2 or M2(Z2), such that
whenever (xα)Λ ∈ A/J(A) with x3

α = 1 and xα 6= 1 for all α ∈ Λ, there
exists (yα)

Λ
∈ A/J(A) with yα 6= 0 and y2

α = 0 for all α ∈ Λ.

Proof. This is by Lemmas 3.1, 3.2 and Theorem 2.2. �

Corollary 3.4. If R/J(R) ∼= S
⊕(∏

M2(Z2)
)
for a Boolean ring S with J(R)

nil such that a2 + 2a = 0 for all a ∈ Nil(R), then R is an involution-clean ring.

As seen in Example 2.4, a subdirect product of a Boolean ring and a family
of copies of M2(Z2) need not be an involution-clean ring.

Next we determine when a (formal or triangular) matrix ring is involution-
clean.

Proposition 3.5. Let S, T be rings andM a non-trivial (S, T )-bimodule. Then
the formal matrix ring ( S M

0 T ) is an involution-clean ring if and only if S, T are
involution-clean rings and Nil(S)M = MNil(T ) = 2M = 0.

Proof. (⇒) If x ∈ M , then ( 0 x
0 0 )

2
+ 2 ( 0 x

0 0 ) = 0, and this shows that 2x = 0.

Hence 2M = 0. Let a ∈ Nil(S) an x ∈ M . Then ( a x0 0 )
2

+ 2 ( a x0 0 ) = 0, and
this shows that ax = −2x = 0. So Nil(S)M = 0. Similarly MNil(T ) = 0. As
images of ( S M

0 T ), S and T are clearly involution-clean rings.
(⇐) We write S = A ⊕ A′ and T = B ⊕ B′ where 8 = 0 in A and in

B, A′ ⊕ B′ is zero or a subdirect product of F3’s. Write 1S = 1A + 1A′ and
1T = 1B + 1B′ . From 2M = 0, one deduces that 1A′M = 0 and M1B′ = 0,
and that 1Ax = x1B = x for all x ∈M . Therefore,(

S M
0 T

)
∼=
(
A M
0 B

)
×A′ ×B′.

Thus, we only need to show that (A M
0 B ) is an involution-ring. Let ( a x0 b ) ∈

(A M
0 B ). Write a = e+v and b = f+w where e2 = e, v2 = 1, f2 = f and w2 = 1.

Then (1 + v)2 = 2(1 + v) ∈ J(A), so (1 + v)x = 0. Similarly, x(1 + w) = 0.
Thus vx + xw = (1 + v)x + x(1 + w) − 2x = 0, so ( a x0 b ) =

(
e 0
0 f

)
+ ( v x0 w ) is a

sum of an idempotent and an involution. �

Theorem 3.6. Let R be a ring and n ≥ 2. The following are equivalent:
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(1) Tn(R) is an involution-clean ring.
(2) Tn(R) is a nil-clean ring of nilpotentcy index ≤ 2.
(3) n = 2 and R is Boolean.
(4) Mn(R) is a nil-clean ring of nilpotency index ≤ 2.
(5) Mn(R) is an involution-clean ring.

Proof. (1) ⇒ (3) Write Tn(R) = ( S M
0 R ), where S = Tn−1(R) and M =

M(n−1)×1(R). By Proposition 3.5, 2 = 0 in R and Nil(S)M = 0, from which
we deduce that n = 2 and R is a reduced ring. As an image of T2(R), R is
involution-clean. Thus, R is a subdirect product of involution-clean domains
in which 2 is zero. One easily sees that each of the domains is isomorphic to
Z2, so R is Boolean.

(3) ⇒ (2) Let ( a b0 c ) ∈ T2(R). Then ( a b0 c ) = ( a 0
0 c ) + ( 0 b

0 0 ) is a sum of an
idempotent and a square-zero element.

(2) ⇒ (1) As 2 ∈ Nil(R), 2E11 + E12 is nilpotent, so 0 = (2E11 + E12)2 =
4E11 + 2E12. This shows that 2 = 0 in R. For A ∈ Mn(R), write A = E + B
where E2 = E and B2 = 0. Then A = (1 + E) + (1 + B) is a sum of an
idempotent and an involution.

(5)⇒ (4) By Lemma 3.1, Mn(R) ∼= A×B, where 8 = 0 in A and B is zero
or a subdirect product of Z3’s. Thus, there exists a central idempotent e of
R such that A ∼= Mn(eR) and B ∼= Mn((1 − e)R). As n ≥ 2, it follows from
Lemma 3.1 that e = 1, so 8 = 0 in Mn(R). As E12 ∈ Mn(R) is nilpotent,
(E12)2 + 2E12 = 0, showing that 2 = 0 in R. For A ∈Mn(R), write A = E+V
where E2 = E and V 2 = 1. Then A = (1 + E) + (1 + V ) is a sum of an
idempotent and a square-zero element.

(4) ⇒ (3) If x2 = 0 in R, then xE11 + E12 ∈ Mn(R) is nilpotent; so
xE12 = (xE11 + E12)2 = 0, showing x = 0. Hence R is a reduced ring. As
Mn(R) is nil-clean, R is Boolean by [6, Corollary 6.3]. Assume that n > 2.
Then, as E12 + E23 ∈ Mn(R) is nilpotent, E23 = (E12 + E23)2 = 0. This
contradictions shows that n = 2.

(3) ⇒ (5) By [6, Corollary 6.3], R is nil-clean. By Lemma 3.1, it suffices
to show that A2 = 0 for any nilpotent matrix A in M2(R). Let A =

(
a b
c d

)
be

nilpotent in M2(R). Then the determinant of A must be zero, so ad = bc. We
have A2 =

(
a+bc ab+bd
ac+cd bc+d

)
, and

A3 =

(
a+ bc · d ab+ b · ad+ bc+ bd

ac+ bc+ c · ad+ cd a · bc+ d

)
=

(
a+ ad ab+ bc+ bc+ bd

ac+ bc+ bc+ cd ad+ d

)
=

(
a+ bc ab+ bd
ac+ cd bc+ d

)
= A2.

It follows that A2 = 0. �
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Example 3.7. Z8 is an involution-clean ring, but 2 is not a sum of an idem-
potent and a square-zero element. The trivial extension Z4 ∝ Z4 is not an
involution-clean, but is a nil-clean ring with index of nilpotency ≤ 2.
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