DOI QR코드

DOI QR Code

Characteristics of Nano-structured SiO2:Zn Hollow Powders Prepared in the Micro Drop Fluidized Reactor (MDFR) Process

미세액적 유동반응기 공정에서 연속제조된 나노구조 SiO2:Zn 원환형 입자의 특성

  • Yang, Si Woo (Department Chemical Engineering and Applied Chemistry, Chungnam National University) ;
  • Kang, Yong (Department Chemical Engineering and Applied Chemistry, Chungnam National University) ;
  • Kang, Ho (Ever Green Tech.)
  • 양시우 (충남대학교 응용화학공학과) ;
  • 강용 (충남대학교 응용화학공학과) ;
  • 강호 (에버 그린텍)
  • Received : 2018.05.30
  • Accepted : 2018.06.22
  • Published : 2018.08.01

Abstract

Characteristics of nano-structured $SiO_2:Zn$ hollow powders prepared in the micro drop fluidized reactor process were investigated with respect to bandgap energy and surface activity. The $SiO_2:Zn$ hollow powders were successfully prepared continuously in the one step process with reasonable production efficiency, with varying the amount of THAM (tris(hydroxymethyl)-aminomethane) additive and concentration of $Zn^{2+}$ ions. The doping of $Zn^{2+}$ ions into $SiO_2$ lattice led to the reduction of bandgap energy by forming the acceptor level of $Zn^{2+}$ below the conduction band of $Si^{4+}$ ions. The hollow shape also contributed to reduce the bandgap energy of $SiO_2:Zn$ powders. The doping of $Zn^{2+}$ ions into $SiO_2$ hollow powders could enhance the surface activity by forming SiO-H stretching and oxygen vacancies at the surface of $SiO_2:Zn$ powders.

미세액적 유동반응기 공정에서 제조된 나노구조 $SiO_2:Zn$ 원환형 입자의 특성을 밴드갭 에너지와 표면 반응성의 관점에서 고찰하였다. $SiO_2:Zn$ 원환형 입자를 단일 공정에서 연속적이며 합리적인 생산 효율로 첨가제인 THAM (tris(hydroxymethyl)-aminomethane)과 도핑되는 $Zn^{2+}$ 이온의 농도 변화에 따라 성공적으로 제조할 수 있었다. 그리고 $Zn^{2+}$ 이온의 도핑은 $Si^{4+}$ 이온의 conduction band 보다 에너지 레벨이 낮은 $Zn^{2+}$ 이온의 acceptor level을 형성함으로써 $SiO_2:Zn$ 원환형 입자의 밴드갭 에너지를 줄일 수 있었다. 또한, 입자의 원환형 구조는 $SiO_2:Zn$ 입자의 밴드갭 에너지를 감소시키는데 기여하였다. 따라서 $Zn^{2+}$ 이온이 도핑된 $SiO_2:Zn$ 원환형 입자는 표면에 SiO-H의 형성과 산소 결함의 생성으로 표면 반응성을 증대시킬 것으로 사료되었다.

Keywords

References

  1. Dingemans, G., van Helvoirt, C. A. A., Pierreux, D., Keuning, W. and Kessels, W. M. M., "Plasma-Assisted ALD for the Conformal Deposition of $SiO_2$: Process, Material and Electronic Properties," J. Electrochem. Soc., 159, H277-H285(2012). https://doi.org/10.1149/2.067203jes
  2. Xu, F., Tan, W., Liu, H., Li, D., Li, Y. and Wang, M., "Immobilization of PDMS-$SiO_2-TiO_2$ Composite for the Photocatalytic Degradation of dye AO-7," Water Sci. Technol., 74, 1680-1688(2016). https://doi.org/10.2166/wst.2016.260
  3. Hu, W., Wu, X., Li, Z. and Yang, J., "Porous Silicene as a Hydrogen Purification Membrane," Phys. Chem. Chem. Phys., 15, 5753-5757(2013). https://doi.org/10.1039/c3cp00066d
  4. Cho, G. S., Lee, D. H., Kim, D. S., Lim, H. M., Kim, C. Y. and Lee, S. H., "Effect of Concentration and Surface Property of Silica Sol on the Determination of Particle Size and Electrophoretic Mobility by Light Scattering Method," Korean Chem. Eng. Res., 51, 622-627(2013). https://doi.org/10.9713/kcer.2013.51.5.622
  5. Xia, Y., Gates, B., Yin, Y. and Lu, Y., "Monodispersed Colloidal Spheres: Old Materials with New Applications," Adv. Mater., 12, 693-713(2000). https://doi.org/10.1002/(SICI)1521-4095(200005)12:10<693::AID-ADMA693>3.0.CO;2-J
  6. Park, H. Y., Hwang, K. S., Kim, J. H. and Lee, J. Y., "Preparation of Porous Anti-Insect Repellent Powder Using Spray Drying of Medicinal Herbal Extracts Anti-Insect Repellent Silica Sol," Appl. Chem. Eng., 26, 549-556(2015). https://doi.org/10.14478/ace.2015.1067
  7. Jeon, S. J., Song, S. N., Kang, S. J. and Kim, H. T., "Synthesis and Characterization of $SiO_2$-ZnO Composites for Eco-Green Tire Filler," Korean Chem. Eng. Res., 53, 357-363(2015). https://doi.org/10.9713/kcer.2015.53.3.357
  8. Feifel, S. C. and Lisdat, F., "Silica Nanoparticles for the Layer-by-layer Assembly of Fully Electro-active Cytochrome c Multilayers," J. Nanobiotechnol., 9, 59-70(2011). https://doi.org/10.1186/1477-3155-9-59
  9. He, P., Hu, N. and Rusling, J. F., "Driving Forces for Layer-by-Layer Self-Assembly of Films of $SiO_2$ Nanoparticles and Heme Proteins," Langmuir, 20, 722-729(2004). https://doi.org/10.1021/la035006r
  10. Hilliard, L. R., Zhao, X. and Tan, W., "Immobilization of Oligonucleotides Onto Silica Nanoparticles for DNA Hybridization Studies," Analytica Chimica Acta, 470, 51-56(2002). https://doi.org/10.1016/S0003-2670(02)00538-X
  11. Sun, Y., Yan, F., Yang, W., Zhao, S., Yang, W. and Sun, C., "Effect of Silica Nanoparticles with Different Sizes on the Catalytic Activity of Glucose Oxidase," Anal. Bioanal. Chem., 387, 1565-1572(2007). https://doi.org/10.1007/s00216-006-1013-1
  12. Nam, J. M., Thaxton, C. S. and Mirkin, C. A., "Nanoparticle-Based Bio-Bar Codes for the Ultrasensitive Detection of Proteins," Science, 301, 1884-1886(2003). https://doi.org/10.1126/science.1088755
  13. Jung, H. J., Kim, Y. B. and Chang, Y. H., "Preparation of Silica/collagen Microsphere Composit Doped with Silver Nanoparticles," Korean Chem. Eng. Res., 46, 722-726(2008).
  14. Lee, S. H., Yang, S. W., Lim, D. H., Yoo, D. J., Lee, C. K., Kang, G. M. and Kang, Y., "Characteristics of Continuous Preparation of ZnO Powder in a Micro Drop/bubble Fluidized React," Korean Chem. Eng. Res., 53, 597-602(2015). https://doi.org/10.9713/kcer.2015.53.5.597
  15. Yoo, D. J., Lim, D. H., Kang, Y., Lee, C. G. and Kang, G. M., "Opto-electrical Properties of ZnO:Al Powders Prepared in a Micro Drop Fluidized Reactor," Mater. Chem. Phys., 183, 398-404(2016). https://doi.org/10.1016/j.matchemphys.2016.08.044
  16. Kang, Y., Lee, C. G., Kang, G. M., Lim, D. H. and Yoo, D. J., Korea Patent 10-1757414; 10-1727052(2017).
  17. Yoo, D. J., Lim, D. H., Kang, Y., Lee, C. G. and Kang, G. M., "Opto Properties of Nano-structured ZnO:Sn Powders Prepared in a Micro Drop Fluidized Reactor," J. Chem. Eng. Japan, 50, 21-25(2017). https://doi.org/10.1252/jcej.16we041
  18. Yang, S. W., Lim, D. H., Yoo, D. J., Kang, Y., Lee, C. G. and Kang, G. M., "Opto-magnetic Properties of Nano-structured MgO:Al Powders Prepared in a Micro Drop Fluidized Reactor," Advanced Powder Technol., 29, 499-505(2018). https://doi.org/10.1016/j.apt.2018.02.022
  19. Reddy, C. V., Babu, B. and Shim, J., "Synthesis of Cr-doped $SnO_2$ Quantum Dots and its Enhanced Photocatalytic Activity," Mater. Sci. Eng. B, 223, 131-142(2017). https://doi.org/10.1016/j.mseb.2017.06.007
  20. Othmen, W. B. H., Sdiri, N., Elhouichet, H. and Ferid, M., "Study of Charge Transport in Fe-doped $SnO_2$ Nanoparticles Prepared by Hydrothermal Method," Mater. Sci. Semiconductor Procsssing, 52, 46-54(2016). https://doi.org/10.1016/j.mssp.2016.05.010
  21. Kang, H. W., Lim, S. N. and Park, S. B., "Effect of tri-doping on $H_2$ Evolution Under Visible Light Irradiation on $SrTiO_3$:Ni/Ta/La Prepared by Spray Pyrolysis from Polymeric Precursor," Int'l J. Hydrogen Energy, 37, 10539-10548(2012). https://doi.org/10.1016/j.ijhydene.2012.04.047
  22. Dujardin, R., Delorme, F., Pintault, B., Autret, C., Monot-Laffez, I. and Giovannelli, F., "A High Yield One-pot Aqueous Synthesis of Crystalline $SnO_2$ Nanoparticles," Mater. Lett., 187, 151-153(2017). https://doi.org/10.1016/j.matlet.2016.10.074
  23. Shannon, R. D., "Revised Effective Ionic Radii and Systematic Studies of Interatomic Distances in Halides and Chalcogenides," Acta. Cryst. A, 32, 751-767(1976). https://doi.org/10.1107/S0567739476001551