DOI QR코드

DOI QR Code

Effect of Moisture on the Melting Point and High-Temperature Stability of NaKZn-Chloride

수분이 NaKZn-Chloride의 녹는점과 고온안정성에 미치는 영향

  • Lee, Jeong Hwan (Department of Plant System and Machinery, University of science and Technology) ;
  • Kim, Young (Department of Plant System and Machinery, University of science and Technology) ;
  • Yoon, Seok Ho (Department of Plant System and Machinery, University of science and Technology) ;
  • Lee, Kong Hoon (Department of Thermal Systems, Korea Institute of Machinery and Materials) ;
  • Choi, Jun Seok (Department of Thermal Systems, Korea Institute of Machinery and Materials)
  • 이정환 (과학기술연합대학원대학교 플랜트기계공학과) ;
  • 김영 (과학기술연합대학원대학교 플랜트기계공학과) ;
  • 윤석호 (과학기술연합대학원대학교 플랜트기계공학과) ;
  • 이공훈 (한국기계연구원 열시스템연구실) ;
  • 최준석 (한국기계연구원 열시스템연구실)
  • Received : 2018.03.27
  • Accepted : 2018.06.04
  • Published : 2018.08.01

Abstract

The high temperature stability of a chloride mixture, $NaCl-KCl-ZnCl_2$ (NaKZn-Chloride), is investigated to evaluate its potential as a thermal storage material. A thermal storage media should maintain a stable thermal properties within the temperature range of heat storage. Results from an a priori experiment showed that the NaKZn-chloride is stable only up the much lower temperature, while its stability limit is reported to be $850^{\circ}C$ in the literature. This study aims to investigate if the thermal property is changed by the moisture absorbed in the heat storage material. The effect of moisture content on the thermal properties was measured. The results show that the melting point remains the same regardless of the amount of moisture absorbed. Meanwhile, the high temperature stability is lower for the moisture treated samples. The results of this work infer that the loss of a hygroscopic thermal storage media can be reduced by avoiding its contacts to moisture in designing high temperature thermal storage systems.

$NaCl-KCl-ZnCl_2$ 혼합물(NaKZn-Chloride)의 열물성을 조사하여 열저장 매체로서의 잠재성을 평가하였다. 고온용 축열물질로 이용하기 위해서는 축열온도 범위에서 안정된 열물성을 유지하여야 하는데, 사전실험 결과 해당 혼합물은 알려진 고온안정온도인 $850^{\circ}C$ 보다 훨씬 낮은 온도에서 급격한 분해가 진행되었다. 이에 본 연구에서는, 흡수된 수분에 의해 축열물질의 열적 성질이 변화되는지 확인하고자 하였다. 혼합물의 수분함량에 따라 열물성이 변화되는 지를 열물성 장비로 측정하였으며, 가열-냉각 반복실험을 통해 다시 한 번 확인하였다. 그 결과 녹는 점의 경우 흡수된 수분에 관계없이 일정하지만, 고온 안정성의 경우 흡습한 샘플에서 다소 낮아지는 것을 알 수 있었다. 본 연구결과에 따라 흡습성을 가지는 고온 축열물질을 사용하는 시스템에서 수분과의 접촉을 줄임으로써 축열물질의 손실을 줄일 수 있다.

Keywords

References

  1. Hasnain, S. M., "Review on Sustainable Thermal Energy Storage Technologies, Part 1: Heat Storage Materials and Techniques," Energy Convers. Mgmt., 39(11), 1127-1138(1998). https://doi.org/10.1016/S0196-8904(98)00025-9
  2. Lee, M. H., Song, Y. S., Rhee, Y. W. and Oh, I. H., "Optimization of $CH_3COONa{_}3H_2O$-based PCM for Latent Heat Storage System," HWAHAK KONGHAK, 38(3), 429-433(2000).
  3. Nju, X., Yu, J. and Wang, S., "Experimental Study on Low-temperature Waste Heat Thermoelectric Generator," J. Power Sources., 188, 621-626(2009). https://doi.org/10.1016/j.jpowsour.2008.12.067
  4. Velraj, R., Seenjraj, R. V., Hafner, B., Faber, C. and Schwarzer, K., "Heat Transfer Enhancement in a Latent Heat Storage System," Solar Energy, 65(3), 171-180(1999). https://doi.org/10.1016/S0038-092X(98)00128-5
  5. Mettawee, E. B. S. and Assass, G. M. R., "Thermal Conductivity Enhancement in a Latent Heat Storage System," Solar Energy, 81, 839-845(2007). https://doi.org/10.1016/j.solener.2006.11.009
  6. Shin, J. S., Cho, S. J., Choi, S. H. et al., "A Simulation Study of Inter Heat Exchanger Process in SI Cycle Process for Hydrogen Production," Korean Chem. Eng. Res., 52(4), 459-466(2014). https://doi.org/10.9713/kcer.2014.52.4.459
  7. Vignarroban, K., Xu, X., Arvay, A., Hsu, K. and Kannan A. M., "Heat Transfer Fluids for Concentrating Solar Power Systems - A Review," Applied Energy, 146, 383-396(2015). https://doi.org/10.1016/j.apenergy.2015.01.125
  8. Yang, Z. and Garimella, S. V., "Thermal Analysis of Solar Thermal Energy Storage in a Molten-salt Thermocline," Solar Energy, 84, 974-985(2010). https://doi.org/10.1016/j.solener.2010.03.007
  9. Mao, A., Park, J. H., Han, G. Y., Seo, T. and Kang, Y., "Heat Transfer Characteristics of High Temperature Molten Salt for Storage of Thermal Energy," Korean J. Chem. Eng., 27(5), 1452-1457(2010). https://doi.org/10.1007/s11814-010-0260-1
  10. Cho, Y. Z., Yan, H.-C., Lee, H.-S. and Kim, I.-T., "Characteristic of Oxidation Reaction of Lanthanide Chlorides in Oxygen-Eutectic Salt Bubble Column," Korean Chem. Eng. Res., 47(4), 465-469(2009).
  11. You, H. Y., Jeong, S. M. and Kim, J. -G., "Electrochemical Behavior of $Mg^{2+}$ Ions in $MgCl_2-CaCl_2$-NaCl Molten Dalt," Korean Chem. Eng. Res., 50(6), 939-944(2012). https://doi.org/10.9713/kcer.2012.50.6.939
  12. Andika, R., Kim, Y., Yoon, S. H., Kim, D. H., Choi, J. S. and Lee, M., "Techno-economic Assessment of Technological Improvements in Thermal Energy Storage of Concentrated Solar Power," Solar Energy, 157, 552-558(2017). https://doi.org/10.1016/j.solener.2017.08.064
  13. Raade, J. and Padowitz, D., "Inorganic Salt Heat Transfer Fluid," US20120056125A1, Halotechnics Inc. (2012).
  14. Raade, J., Vaughn, J. and Elkin, B., "Thermal Energy Storage with Molten Salt," US20130180520A1, Halotechnics Inc. (2013).
  15. Manga, V. R., Swinteck, N., Bringuier, S., Lucas, P., Deymier, P. and Muralidharan, K., "Interplay between Structure and Trans- port Properties of Molten Salt Mixtures of $ZnCl_2$-NaCl-KCl: A Molecular Dynamics Study," J. Chem. Phys., 144, 094501(2016). https://doi.org/10.1063/1.4942588
  16. Li, P. W., Gervasio, D., Lucas, P., Muralidharan, K., Chan, C. L., Hao, Q., Momayez, M., Kannan, A. M., Jeter, S. and Teja, A., "Halide and Oxy-halide Eutectic Systems for High Performance High Temperature Heat Transfer Fluids," SunShot Concentrating Solar Power Program Review(2013).
  17. Vlasveld, D. P. N., Groenewold, J., Bersee, H. E. N. and Picken, S. J., "Moisture Absorption in Polyamide-6 Silicate Nanocomposites and its Influence on the Mechanical Properties," Polymer, 46, 12567-12576(2005). https://doi.org/10.1016/j.polymer.2005.10.096
  18. Yu, Y. J., Hearon, K., Wilson, T. S and Maitland, D. J, "The Effect of Moisture Absorption on the Physical Properties of Polyurethane Shape Memory Polymer Foams," Smart Mater. Struct., 20, 085010(2011). https://doi.org/10.1088/0964-1726/20/8/085010
  19. Roos, Y. and Karel, M., "Differential Scanning Calorimetry Study of Phase Transitions Affecting the Quality of Dehydrated Materials," Biotechnol. Prog., 6, 159-163(1990). https://doi.org/10.1021/bp00002a011
  20. Meng, X., Busserolles, K. B., Husson, P. and Andanson, J. M., "Impact of Water on the Melting Temperature of Urea + Chlorine Chloride Deep Eutectic Solvent," New J. Chem., 40, 4492(2016). https://doi.org/10.1039/C5NJ02677F
  21. Omaran, S., Heggs, P. and Ding, Y., "The Influence of Moisture Content on the Evaluation of Latent Heat of Molten Salts Used for Thermal Energy Storage Application," Energy Procedia, 46, 317-323(2014). https://doi.org/10.1016/j.egypro.2014.01.188
  22. AlQaydi, M. S., Delclos, T., AlMheiri, S., McKrell, T. and Calvet, N., "Effect of Sand and Moisture on Molten Salt Properties for Open Direct Absorption Solar Receiver/Storage System," American Institute of Physics, 1734, 050002(2016).
  23. Daejung Chemicals & Metals Co., Ltd., http://www.daejungchem.co.kr/main/main.asp.
  24. Kozawa, T., Onda, A., Yanagisawa, K., Masuda, Y. and Kishi, A., "Effect of Water Vapor on the Thermal Decomposition Process of Zinc Hydroxide Chloride and Crystal Growth of Zinc Oxide," J. Solid State Chem., 184, 589-596(2011). https://doi.org/10.1016/j.jssc.2011.01.015
  25. Tanaka, H. and Fujioka, A., "Influence of Thermal Treatment on the Structure and Adsorption Properties of Layered Zinc Hydroxychloride," Materials Research Bulletin., 45, 46-51(2010). https://doi.org/10.1016/j.materresbull.2009.09.003
  26. Martinez, O. G., Vila, E., Vidales, J. L. M. D., Rojas, R. M. and Petrov, K., "On the Thermal Decomposition of the Zinc (II) Hydroxide Chlorides $Zn_5(OH)_8Cl_2{\cdot}H_2O$ and ${\beta}$-Zn(OH)Cl," J. Mater. Sci., 29, 5429-5434(1994). https://doi.org/10.1007/BF01171557
  27. Srivastava, O. K. and Secco, E.A., "Studies on Metal Hydroxyl Compounds. I. Thermal Analysis of Zinc Derivatives ${\varepsilon}-Zn(OH)_2$, $Zn_5(OH)_8Cl_2{\cdot}H_2O$, ${\beta}$-Zn(OH)Cl and ZnOHF," Can. J. Chem., 45, 579(1967). https://doi.org/10.1139/v67-096
  28. Moezzi, A., Cortie, M. and McDonagh, A., "Transformation of Zinc Hydroxide Chloride Monohydrate to Crystalline Zinc Oxide," Dalton Trans., 45, 7385(2016). https://doi.org/10.1039/C5DT04864H
  29. Son, S. H. and Tsukihashi, F., "Vapor Pressure Measurement of Zinc Oxychloride," J. Phys. Chem. Solids, 66, 392-395(2005). https://doi.org/10.1016/j.jpcs.2004.06.085
  30. Wei, X. Q., Li, Q. H., Li, H. C., Li, H. J. and Chen, S. X., "The Use of $ZnCl_2$ Activation to Prepare Low-cost Porous Carbons Coated on Glass Fibers Using Mixtures of Novolac, Polyethylene Glycol and Furfural as Carbon Precursors," New Carbon Materials, 60(6), 579-586(2015).