DOI QR코드

DOI QR Code

Fate Analysis and Impact Assessment for Vehicle Polycyclic Aromatic Hydrocarbons (PAHs) Emitted from Metropolitan City Using Multimedia Fugacity Model

다매체거동모델을 이용한 대도시 자동차 배출 Polycyclic Aromatic Hydrocarbons (PAHs) 거동 해석 및 영향평가

  • Rhee, Gahee (Department of Environmental Science and Engineering, Kyung Hee University) ;
  • Hwangbo, Soonho (Department of Environmental Science and Engineering, Kyung Hee University) ;
  • Yoo, ChangKyoo (Department of Environmental Science and Engineering, Kyung Hee University)
  • 이가희 (경희대학교 환경응용과학과) ;
  • 황보순호 (경희대학교 환경응용과학과) ;
  • 유창규 (경희대학교 환경응용과학과)
  • Received : 2018.03.27
  • Accepted : 2018.05.24
  • Published : 2018.08.01

Abstract

This study was carried out to research the multimedia fate modeling, concentration distribution and impact assessment of polycyclic aromatic hydrocarbons (PAHs) emitted from automobiles, which are known as carcinogenic and mutation chemicals. The amount of emissions of PAHs was determined based on the census data of automobiles at a target S-city and emission factors of PAHs, where multimedia fugacity modeling was conducted by the restriction of PAHs transfer between air-soil at the impervious area. PAHs' Concentrations and their distributions at several environmental media were predicted by multimedia fugacity model (level III). The residual amounts and the distributions of PAHs through mass transfer of PAHs between environment media were used to assess the health risk of PAHs at unsteady state (level IV), where the sensitivity analyses of the model parameter of each variable were conducted based on Monte Carlo simulation. The experimental result at S-city showed that Fluoranthene among PAHs substances are the highest residual concentrations (60%, 53%, 32% and 34%) at all mediums (atmospheric, water, soil, sediment), respectively, where most of the PAHs were highly accumulated in the sediment media (more than 80%). A result of PAHs concentration changes in S-city over the past 34 years identified that PAHs emissions from all environmental media increased from 1983 to 2005 and decreased until 2016, where the emission of heavy-duty vehicle including truck revealed the largest contribution to the automotive emissions of PAHs at all environment media. The PAHs concentrations in soil and water for the last 34 years showed the less value than the legal standards of PAHs, but the PAHs in air exceeded the air quality standards from 1996 to 2016. The result of this study is expected to contribute the effective management and monitoring of toxic chemicals of PAHs at various environment media of Metropolitan city.

본 연구에서는 자동차배출화학물질 중 발암성 및 돌연변이 유발 물질인 PAHs (Polycyclic Aromatic Hydrocarbons)의 다매체 간 거동 모델링, 농도 분포, 그리고 영향평가를 수행하였다. S시의 차량 통계와 PAHs의 배출계수를 이용하여 PAHs의 배출량을 산정하였고, 도시의 불투수면적에서 대기-토양의 물질이동 제한조건을 바탕으로 다매체 퓨가시티 모델링을 수행하였다. 다매체 퓨가시티 모델을 이용하여 정상상태에서 환경 매체내 PAHs의 농도 분포를 예측하고(Level III), 각 모델 변수에 대하여 몬테카를로 민감도 분석을 바탕으로 비정상상태에서 환경 매체내 PAHs 잔류량 및 매체 간 물질 이동으로 인한 매체별 농도분포와 위해성 평가를 수행하였다(Level IV). S시의 경우 배출된 PAHs중 Fluoranthene이 네 가지 환경 매체(대기, 수계, 토양, 침전물)에서 모두 가장 높은 잔류농도(60.0%, 53.5%, 32.0%, 33.6%)를 보였으며 침전물에서 가장 높은 농도(80%이상)로 잔류하였다. 34년 동안 S시 환경 매체 중의 PAHs 농도 변화 분석 결과, 모든 환경 매체에서 PAHs 잔류량은 1983년부터 2005년까지 증가하였고, 이후 2016년까지 감소한 것을 확인하였으며, 각각 환경매체에서 트럭을 포함한 중량차량(Heavy Duty Vehicles, HDVs) 배출가스의 PAHs 농도 기여도가 큰 것으로 나타났다. 매체 별 PAHs 농도는 토양과 수계에서 34년간 기준치보다 작은 값을 보였으나, 대기중 PAHs농도는 권고치를 초과하는 농도값을 보였다. 본 연구 결과를 통해 지난 30여년 동안 대도시 자동차 배출 화학물질인 PAHs의 환경 중 거동 및 위해성을 평가를 통하여 PAH물질 관리 및 규제의 필요성을 제시하고, 다양한 환경 매체 내 독성화학물질 관리 및 모니터링에 기여할 수 있을 것으로 기대된다.

Keywords

References

  1. Lee, H. S. and Yoo, J. W., "Removal of Polyaromatic Hydrocarbons from Scrap Tires by Solvent Extraction," Korean J. Chem. Eng., 28, 1065(2011). https://doi.org/10.1007/s11814-010-0462-6
  2. Haritash, A. K. and Kaushik, C. P., "Biodegradation Aspects of Polycyclic Aromatic Hydrocarbons (pahs): A Review," J. Hazardous Mater., 169, 1(2009). https://doi.org/10.1016/j.jhazmat.2009.03.137
  3. Maliszewska-Kordybach, B., "Persistent Organic Contaminants in the Environment: Pahs as a Case Study," Bioavailability of organic xenobiotics in the environment: Practical consequences for the environment, Baveye, P., Block, J.-C. and Goncharuk, V.V., eds., Springer Netherlands, Dordrecht, pp. 3-34 (1999).
  4. Park, J. S., Yoon, S. K. and Bae, W. K., "Distribution and Emission Source of Pahs in Ambient Air of Seoul," Analytical Science & Technology 23, 9(2010).
  5. Jean-Luc Besombes, A. M., Olivier Patissier, Nicolas March- and, Nathalie Chevron, Muriel Stoklov, Pierre Masclet, "Particulate Pahs Observed in the Surrounding of a Municipal Incinerator," Atmospheric Environment 35, 12(2001).
  6. Ramirez, N., Cuadras, A., Rovira, E., Marce, R. M. and Borrull, F., "Risk Assessment Related to Atmospheric Polycyclic Aromatic Hydrocarbons in Gas and Particle Phases Near Industrial Sites," Environmental Health Perspectives 119, 1110(2011). https://doi.org/10.1289/ehp.1002855
  7. Marchand, N., Besombes, J. L., Chevron, N., Mascelt, P., Aymoz, G. and Jaffrezo, J. L., "Polycyclic Aromatic Hydrocarbons (pahs) in the Atmospheres of Two French Alpine Valleys: Sources and Temporal Patterns," Atmospheric Chemistry and Physics, 4, 15(2004).
  8. Marr, L. C., Hammond, S. K. Kirchstetter, T. W., Hering S. V., Harely, R. A., Miguel A. H. and Harley, R. A., "Characterization of Polycyclic Aromatic Hydrocarbons in Motor Vehicle Fuels and Exhaust Emissions," Environmental Science & Technology 33, 9 (1999).
  9. Zhang, X. L., Tao, S., Liu, W. X., Yang, Y., Zuo, Q. and Liu, S. Z., "Source Diagnostics of Polycyclic Aromatic Hydrocarbons Based on Species Ratios: A Multimedia Approach," Environmental Science & Technology, 39, 9109(2005). https://doi.org/10.1021/es0513741
  10. Li, Q., Kim, M., Liu, Y. and Yoo, C., "Quantitative Assessment of Human Health Risks Induced by Vehicle Exhaust Polycyclic Aromatic Hydrocarbons at Zhengzhou via Multimedia Fugacity Models with Cancer Risk Assessment," Science of The Total Environment, 618, 430(2018). https://doi.org/10.1016/j.scitotenv.2017.11.084
  11. Niederer, M., Maschka-Selig, A. and Hohl, C., "Monitoring Polycyclic Aromatic Hydrocarbons (pahs) and Heavy Metals in Urban Soil, Compost and Vegetation," Environmental Science and Pollution Research 2, 83(1995). https://doi.org/10.1007/BF02986721
  12. Pandey, P. K., Patel, K. S. and Lenicek, J., "Polycyclic Aromatic Hydrocarbons: Need for Assessment of Health Risks in India? Study of an Urban-industrial Location in India," Environmental Monitoring and Assessment, 59, 287(1999). https://doi.org/10.1023/A:1006169605672
  13. Lee, S. C., Ho, K. F., Chan, L. Y., Zielinska, B. and Chow, J. C., "Polycyclic Aromatic Hydrocarbons (pahs) and Carbonyl Compounds in Urban Atmosphere of Hong Kong," Atmospheric Environment, 35, 5949(2001). https://doi.org/10.1016/S1352-2310(01)00374-0
  14. Li, Q., Zhu, T., Qiu, X., Hu, J. and Vighi, M., "Evaluating the Fate of p,p'-ddt in Tianjin, China Using a Non-steady-state Multimedia Fugacity Model," Ecotoxicology and Environmental Safety 63, 196(2006). https://doi.org/10.1016/j.ecoenv.2005.06.003
  15. Maddalena, R. L., McKone, T. E., Layton, D. W. and Hsieh, D. P. H., "Comparison of Multi-media Transport and Transformation Models: Regional Fugacity Model vs. Caltox," Chemosphere 30, 869(1995). https://doi.org/10.1016/0045-6535(94)00447-3
  16. Fingas, M. F., The Handbook of Hazardous Materials Spills Technology, McGraw-Hill (2002).
  17. Huang, L. and Batterman, S. A., "Multimedia Model for Polycyclic Aromatic Hydrocarbons (pahs) and Nitro-pahs in Lake Michigan," Environ. Sci. Technol., 48, 13817(2014). https://doi.org/10.1021/es503137b
  18. Ntakirutimana, T., Guo, J.-S., Gao, X. and Gong, D.-C., "Application of Multimedia Fugacity Model to Assess the Environmental Fate of Benzo (a) Pyrene," Research Journal of Environ. Earth Sci., 4, 731(2012).
  19. Kim, M. K., Bae, H. K., Song, S. H., Koo, H. J., Kim, H. M., Choi, K. S., Jeon, S. H. and Lee, M. S., "Estimation of Multimedia Environmental Distribution for Benzoyl Peroxide Using Eqc Model," J. Korean Soc. Environ. Eng., 27, 9 (2005).
  20. Mackay, D., Multimedia Environmental Models: The Fugacity Approach, Second Edition, CRC Press (2001).
  21. Donald Mackay, S. P., "Evaluating the Multimedia Fate of Organic Chemicals: A Level iii Fugacity Model," Environmental Sci. Technol., 25, 10(1991).
  22. Mackay, D., Shiu, W. Y. and Ma, K. C., Illustrated Handbook of Physical-chemical Properties of Environmental Fate for Organic Chemicals, Taylor & Francis(1997).
  23. Donald Mackay, A. D. G., Sally Paterson, Gabriel Kicsi, Christina E. Cowan, David M. Kane, "Assessment of Chemical Fate in the Environment Using Evaluative, Regional and Local-scale Models: Illustrative Application to Chlorobenzene and Linear Alkylbenzene Sulfonates," Environmental Toxicology and Chem., 15, 11 (1996).
  24. Mackay, D., Di Guardo, A., Paterson, S. and Cowan, C. E., "Evaluating the Environmental Fate of a Variety of Types of Chemicals Using the Eqc Model," Environmental Toxicology and Chem., 15, 1627 (1996). https://doi.org/10.1002/etc.5620150929
  25. Ao, J., Chen, J., Tian, F. and Cai, X., "Application of a Level iv Fugacity Model to Simulate the Long-term Fate of Hexachlorocyclohexane Isomers in the Lower Reach of Yellow River Basin, China," Chemosphere, 74, 370(2009). https://doi.org/10.1016/j.chemosphere.2008.09.085
  26. Hamby, D. M., "A Review of Techniques for Parameter Sensitivity Analysis of Environmental Models," Environmental Monitoring and Assessment 32, 135(1994). https://doi.org/10.1007/BF00547132
  27. Helton, J. C., Iman, R. L., Johnson, J. D. and Leigh, C. D., "Uncertainty and Sensitivity Analysis of a Dry Containment Test Problem for the Maeros Aerosol Model," Nuclear Sci. Eng., 102, 22(1989). https://doi.org/10.13182/NSE89-A23629
  28. Mukaka, M. M., "A Guide to Appropriate Use of Correlation Coefficient in Medical Research," J. Medical Association of Malawi 24, 3(2012).
  29. Younshik, C., Taijin, S. and Jeongwan, K., "Reduction Effect of co2 Emission on bis Using Tier 3 Methodology - a Case Study on Daejun-chungjoo Project," J. Korean Soc. Civil Eng., 31, 375 (2011).
  30. Diamond, M. L., Priemer, D. A. and Law, N. L., "Developing a Multimedia Model of Chemical Dynamics in an Urban Area," Chemosphere, 44, 1655(2001). https://doi.org/10.1016/S0045-6535(00)00509-9
  31. Kim, J., Powell, D. E., Hughes, L. and Mackay, D., "Uncertainty Analysis Using a Fugacity-based Multimedia Mass-balance Model: Application of the Updated Eqc Model to Decamethylcyclopentasiloxane (d5)," Chemosphere, 93, 819(2013). https://doi.org/10.1016/j.chemosphere.2012.10.054
  32. MacLeod, M., Fraser, A. J. and Mackay, D., "Evaluating and Expressing the Propagation of Uncertainty in Chemical Fate and Bioaccumulation Models," Environmental Toxicology Chemistry, 21, 700(2002). https://doi.org/10.1002/etc.5620210403
  33. Chang, K.-F., Fang, G.-C., Chen, J.-C. and Wu, Y.-S., "Atmospheric Polycyclic Aromatic Hydrocarbons (pahs) in Asia: A Review from 1999 to 2004," Environ. Pollution, 142, 388(2006). https://doi.org/10.1016/j.envpol.2005.09.025
  34. Park, S., Kim, S. and Lee, Y., "Comparative Study on the Methodology of Motor Vehicle Emission Calculation," J. Korean Soc. Transportation 19, 35 (2001).
  35. Lee, W.-B. and Kim, J., "Prediction of Bap and Total Pah in Soil from Pyr Concentration Using Regression Analysis," J. Korean Soc. Environ. Eng., 39, 118(2017). https://doi.org/10.4491/KSEE.2017.39.3.118
  36. Nisbet, I. C. T. and LaGoy, P. K., "Toxic Equivalency Factors (tefs) for Polycyclic Aromatic Hydrocarbons (pahs)," Regulatory Toxicology and Pharmacology 16, 290(1992). https://doi.org/10.1016/0273-2300(92)90009-X
  37. Kwon, J.-H. and Lee, D. S., "Sensitivity Analysis for a Level-iii Multimedia Environmental Model: A Case Study for 2, 3, 7, 8-tcdd in Seoul," Korean J. Environ. Toxicology, 17, 225(1986).
  38. Juhasz, A. L. and Naidu, R., "Bioremediation of High Molecular Weight Polycyclic Aromatic Hydrocarbons: A Review of the Microbial Degradation of Benzo[a]pyrene," International Biodeterioration Biodegradation, 45, 57(2000). https://doi.org/10.1016/S0964-8305(00)00052-4
  39. Kim, K.-H., Jahan, S. A., Kabir, E. and Brown, R. J. C., "A Review of Airborne Polycyclic Aromatic Hydrocarbons (pahs) and Their Human Health Effects," Environment International, 60, 71(2013). https://doi.org/10.1016/j.envint.2013.07.019
  40. "Risk assessment of polycyclic aromatic hydrocarbons (pahs)", National Institute of Food and Drug Safety Evaluation (2016).
  41. Ravindra, K., Sokhi, R. and Van Grieken, R., "Atmospheric Polycyclic Aromatic Hydrocarbons: Source Attribution, Emission Factors and Regulation," Atmospheric Environment 42, 2895(2008). https://doi.org/10.1016/j.atmosenv.2007.12.010
  42. Dae-Seon, K., "The Analytical Studies on the Exposure and the Effect Indicators of Organic Chemical Pollutants(ii);focused on Pahs Chemicals," National Institute of Environmental Research, p. 126 (2003).
  43. Lee, J. Y., "Studies on Sources and Transport Characteristics of Polycyclic Aromatic Hydrocarbons (pahs) in Korea," Ewha Womans University, p. 2386133 bytes (2006).
  44. Dong Hwan, K. and Gon, O., "Survey on Concentration Characteristics of Polycyclic Aromatic Hydrocarbons in Soil in Seoul," J. Environ. Sci., 14, 71(2005).
  45. Gong, S. Y., "A Study on the Health Impact and Management Policy of pm2.5 in korea i," Korea Environment Institute, p. 190.
  46. Seoul statistics, http://stat.seoul.go.kr/jsp/WWS8/WWSDS8111.jsp?cot=017 (accessed 2017).
  47. Choi, J. Y. and Cho, S. H., "A Study on the Impervious Area Ratio of Korea and Improvement Plan," Ministry of Environment Korea, Korea, p. 369(2013).
  48. Hughes, L., Mackay, D., Powell, D. E. and Kim, J., "An Updated State of the Science Eqc Model for Evaluating Chemical Fate in the Environment: Application to d5 (decamethylcyclopentasiloxane)," Chemosphere 87, 118(2012). https://doi.org/10.1016/j.chemosphere.2011.11.072