DOI QR코드

DOI QR Code

Performance Comparison Between Stationary PEMFC MEA and Automobile MEA under Pure Hydrogen Supply Condition

순수 수소 공급조건에서 정치용 PEMFC MEA와 차량용 MEA 성능비교

  • Received : 2018.05.14
  • Accepted : 2018.06.22
  • Published : 2018.08.01

Abstract

When pure hydrogen was supplied to the stationary PEMFC generally using the reforming gas, its characteristics were compared with the vehicle PEMFC. The effect of varying the amount of hydrogen supply to the anode on the overall performance was compared. The variation of hydrogen supply in the range of 1.0~1.7 excess (stoi.) had little effect on the OCV of stationary and vehicle MEA (Membrane and Electrode Assembly). At 0.7 V, the current density of the stationary MEA was about 16% higher than that of the vehicle MEA. I-V performance, impedance, and LSV were measured with varying relative humidity. Both OCV and electrolyte membrane resistances decreased with increasing relative humidity. The hydrogen permeability of the stationary MEA was lower than that of the vehicle MEA, showing that the durability of the stationary membrane could be higher than that of the vehicle membrane.

개질가스를 일반적으로 사용하는 정치용 PEMFC에 순수 수소를 공급했을 때 그 특성을 차량용 막과 전극 합체(MEA)와 비교하였다. 수소 공급량을 변화시키며 anode에서 수소공급량이 전체 성능에 미치는 영향을 비교하였다. 수소를 1.0~1.7 과잉(stoi.)범위에서 공급량을 변화시켰을 때 정치용이나 차량용 모두 OCV에 미치는 영향은 거의 없었다. 0.7 V에서 정치용 MEA의 전류밀도는 차량용보다 약 16% 높았다. 그리고 상대습도를 변화시키며 I-V 성능, 임피던스, LSV를 측정하였다. 상대습도 증가에 따라 OCV와 전해질 막 저항이 모두 감소하였다. 정치용 MEA의 수소투과도가 차량용보다 더 낮아 정치용 MEA의 전해질 막의 내구성이 차량용보다 더 높을 수 있음을 보였다.

Keywords

References

  1. Laconti, A. B., Mamdan, M. and McDonald, R. C., in: W. Vielstich, H. A. Gasteiger, A. Lamm (Eds.). Handbook of Fuel Cells: Fundamentals Technology and Applications, Vol. 3, John Wiley & Sons Ltd., Chichester, England, 611-612(2003).
  2. Peighambardoust, S. J., Rowshanzamir, S. and Amjadi, M., "Review of the Proton Exchange Membranes for Fuel Cell Applications," Int. J. Hydrogen Energy, 35(17), 9349-9384(2010). https://doi.org/10.1016/j.ijhydene.2010.05.017
  3. Venturelli, L., Santangelo, P. E. and Tartarini, P., "Fuel Cell Systems and Traditional Technologies. Part II: Experimental Study on Dynamic Behavior of PEMFC in Stationary Power Generation," Appl. Therm. Eng., 29(17-18), 3469-3475(2009). https://doi.org/10.1016/j.applthermaleng.2009.05.023
  4. Pasdag, O., Kvasnicka, A., Steffen, M. and Heinzel, A., "Highly Integrated Steam Reforming Fuel Processor with Condensing Burner Technology for Maximised Electrical Efficiency of CHP-PEMFC Systems," Energy Procedia, 28, 57-65(2012). https://doi.org/10.1016/j.egypro.2012.08.040
  5. Kurtz, J., Dinh, H., Saur, G. and Ainscough, C., "Fuel Cell Technology Status: Degradation," DOE 2017 Annual Merit Review, Washington, DC, June 8, 2017.
  6. Lee, H., Kim, T. H., Sim, W. J., Kim, S. H., Ahn, B. K., Lim, T. W. and Park, K. P., "Pinhole Formation in PEMFC Membrane After Electrochemical Degradation and Wet/dry Cycling Test," Korean J. Chem. Eng., 28(2), 487-491(2011). https://doi.org/10.1007/s11814-010-0381-6
  7. Song, J. H., Kim, S. H., Ahn, B. K., Ko, J. J. and Park, K. P., "Effect of Electrode Degradation on the Membrane Degradation in PEMFC," Korean Chem. Eng. Res., 51(1), 68-72(2013). https://doi.org/10.9713/kcer.2013.51.1.68
  8. Hwang, B. C., Chung, H. B., Song, M. H., Oh, S. J., Na, I. C. and Park, K. P., "Effect of Humidity and Flooding on the Performance of Proton Exchange Membrane Fuel Cell," Korean Chem. Eng. Res., 55(3), 302-306(2017). https://doi.org/10.9713/KCER.2017.55.3.302
  9. Hwang, B. C., Lee, H. R. and Park, K. P., "The Effect of Membrane Thickness on Durability and Performance of Proton Exchange Membrane Fuel Cell," Korean Chem. Eng. Res., 55(4), 473-477(2017). https://doi.org/10.9713/KCER.2017.55.4.473
  10. Healy, J., Hayden, C., Xie, T., Olson, K., Waldo, R. and Brundage, M., "Aspects of the Chemical Degradation of PFSA Ionomers Used in PEM Fuel Cells," Fuel Cells, 5(2), 302-308(2005). https://doi.org/10.1002/fuce.200400050

Cited by

  1. Degradation characteristics of membrane electrode assembly under drive cycle test protocol vol.16, pp.10, 2018, https://doi.org/10.1080/15435075.2019.1641712
  2. 국내 연료전지 분야 연구동향 분석: 전극, 전해질, 분리판, 스택, 시스템, BOP, 진단분석 분야 vol.31, pp.6, 2020, https://doi.org/10.7316/khnes.2020.31.6.530