DOI QR코드

DOI QR Code

서포트 벡터 머신 기반 손동작 뇌전도 구분에 대한 연구

SVM-Based EEG Signal for Hand Gesture Classification

  • 홍석민 (국민대학교 보안-스마트전기자동차학과) ;
  • 민창기 (국민대학교 보안-스마트전기자동차학과) ;
  • 오하령 (국민대학교 보안-스마트전기자동차학과) ;
  • 성영락 (국민대학교 보안-스마트전기자동차학과) ;
  • 박준석 (국민대학교 보안-스마트전기자동차학과)
  • Hong, Seok-min (Department of Secured Smart Electric Vehicle, Kookmin University) ;
  • Min, Chang-gi (Department of Secured Smart Electric Vehicle, Kookmin University) ;
  • Oh, Ha-Ryoung (Department of Secured Smart Electric Vehicle, Kookmin University) ;
  • Seong, Yeong-Rak (Department of Secured Smart Electric Vehicle, Kookmin University) ;
  • Park, Jun-Seok (Department of Secured Smart Electric Vehicle, Kookmin University)
  • 투고 : 2018.03.16
  • 심사 : 2018.06.15
  • 발행 : 2018.07.31

초록

뇌전도는 뇌 활동 시 발생하는 뇌 세포 간 상호작용으로 생성된 전기적 활동이며, 손동작 시 뇌 활동으로 인해 뇌전도가 발생한다. 본 연구에서는 16채널 뇌전도 측정 장비를 이용하여 손동작 전과 좌 혹은 우 손동작 시 발생되는 뇌전도를 측정하였으며, 측정된 데이터는 지도 학습 모델인 서포트 벡터 머신으로 분류하며, 서포트 벡터 머신의 학습 시간을 단축 위해 동작관련 정보 손실을 최소화하고, 뇌전도 정보를 축약할 수 있는 필터링을 통한 특징 추출과 벡터 차원 축소 기법을 제안한다. 분류 결과, 전두엽 부위의 전극에서 손동작 전 상태-손동작사이에서 평균 72.7 %의 정확도로 분류되었다.

An electroencephalogram (EEG) evaluates the electrical activity generated by brain cell interactions that occur during brain activity, and an EEG can evaluate the brain activity caused by hand movement. In this study, a 16-channel EEG was used to measure the EEG generated before and after hand movement. The measured data can be classified as a supervised learning model, a support vector machine (SVM). To shorten the learning time of the SVM, a feature extraction and vector dimension reduction by filtering is proposed that minimizes motion-related information loss and compresses EEG information. The classification results showed an average of 72.7% accuracy between the sitting position and the hand movement at the electrodes of the frontal lobe.

키워드

참고문헌

  1. H. Gunes, M. Piccardi, "Bi-modal emotion recognition from expressive face and body gestures," Journal of Network and Computer Applications, vol. 30, no. 4, pp. 1334-1345, 2007. https://doi.org/10.1016/j.jnca.2006.09.007
  2. E. S. Nurse, P. J. Karoly, D. B. Grayden, and D. R. Freestone, "A generalizable brain-computer interface(BCI) using machine learning for feature discovery," PLoS ONE, vol. 10, no. 6, 2015.
  3. E. Yavuz, O. Aydemir, "Classification of EEG based BCI signals imagined hand closing and opening," in 2017 40th International Conference on Telecommunications and Signal Processing(TSP), Barcelona, 2017, pp. 425-428.
  4. A. F. A. Jais, W. Mansor, K. Y. Lee, and W. F. H. Fauzi, "Motor imagery EEG analysis for home appliance control," in 2017 IEEE 13th International Colloquium on Signal Processing & Its Applications(CSPA), Batu Feringgi, 2017, pp. 314-317.
  5. A. Van Cott, R. P. Brenner, "Technical advantage of digital EEG," Journal of Clinical Neurophysiology, vol. 15, no. 6, pp. 464-475, 1998. https://doi.org/10.1097/00004691-199811000-00003
  6. G. Pfurtscheller, F. H. Lopes da Silva, "Eventrelated EEG/MEG synchronization and desynchronization: Basic principles," Clinical Neurophysiology, vol. 110, no. 11, pp. 1842-1857, Nov. 1999. https://doi.org/10.1016/S1388-2457(99)00141-8
  7. 김정환, 김현태, 박상은, 이정환, 김경섭, "다중레이트 디지털 필터 설계 및 심전도 신호의 기저선 변동 및 전원 잡음 제거," 전기학회논문지, 63(4), pp. 551-558, 2014년. https://doi.org/10.5370/KIEE.2014.63.4.551
  8. W. Ting, Y. Guo-zheng, Y. Bang-hua, and S. Hong, "EEG feature extraction based on wavelet packet decomposition for brain computer interface," Measurement, vol. 41, no. 6, pp. 618-625, Jul. 2008. https://doi.org/10.1016/j.measurement.2007.07.007
  9. V. K. Ingle, J. G. Proakis, MATLAB을 이용한 디지털 신호처리, CENGAGE Learning, p. 334, 2007.
  10. S. Trope, D. Fize, and C. Marlot, "Speed of processing in the human visual system," Nature, vol. 381, no. 6582, pp. 520-522, Jun. 1996. https://doi.org/10.1038/381520a0
  11. Y. Tian, Y. Shi, X. Chen, and W. Chen, "AUC maximizing support vector machines with feature selection," Procedia Computer Science, vol. 4, pp. 1691-1698, 2011. https://doi.org/10.1016/j.procs.2011.04.183