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Abstract. In this paper, we define new quaternionic associated curves called quaternionic

principal-direction curves and quaternionic principal-donor curves. We give some

properties and relationships between Frenet vectors and curvatures of these curves.

For spatial quaternionic curves, we give characterizations for quaternionic helices and

quaternionic slant helices by means of their associated curves.

1. Introduction

Curves with a mathematical relationship between them are called associated
curves. The study of associated curves is an interesting and important research
area of the fundamental theory of curves. Some properties, such as Frenet vectors
and curvatures of original curves, can be characterized by using their associated
curves. Within this area of interest, various associated curves have been defined,
such as Bertrand curve mates, Mannheim partner curves and involute-evolute curve
couples, and they have been studied in different spaces, such as Euclidean spaces,
Minkowski spaces, and dual spaces [1, 3, 7, 12, 14, 17].

Recently, Choi and Kim [4] introduced a new associated curve for a given curve
as the integral curve of the vector field generated by the Frenet frame along it. This
associated curve has been called the direction curve. Using these associated curves
provides a canonical method to construct general helices and slant helices, which
are widely used in various research areas in science and nature. These curves have
attracted many authors to begin to study them. While non-null direction curves
have been studied by Choi et al. [5], null curves have been studied by Qian and
Kim [15] in three-dimensional Minkowski space E3

1 . Körpınar et al. [11] used the
Bishop frame to study these curves. Macit and Düldül [13] defined a W -direction
curve by using a unit Darboux vector field W for a given curve and introduced a
V -direction curve associated with a curve lying on the surface. They also studied
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direction curves in four-dimensional Euclidean space.
In this paper, we give the definition of quaternionic direction curves as the

quaternionic integral curve of a quaternion-valued function generated by Frenet
vectors for a given quaternionic curve. Then, by taking this quaternion-valued
function as the principal normal vector field of the curve, we define principal-
direction and principal-donor curves for spatial quaternionic and quaternionic
curves. We provide relationships between Frenet vectors and curvatures of a given
quaternionic curve and its quaternionic principal-direction curve, and then obtain
some properties of these curves. Moreover, for spatial quaternionic curves, we
provide characterizations for quaternionic helices and quaternionic slant helices with
the aid of their associated curves.

2. Preliminaries

In this section, we give a brief summary of basic concepts concerning quater-
nionic curves and some definitions and theorems about these curves in Euclidean
3-space E3 and in Euclidean 4-space E4.

A real quaternion, q, is defined as q = a0e0 + a1e1 + a2e2 + a3e3 where ai
( i = 0, 1, 2, 3) are real numbers, and the basis {e0, e1, e2, e3} has the following
properties:

e0 = 1, ei × ei = −1, (i = 1, 2, 3) and ei × ej = −ej × ei = ek, (1 ≤ i, j, k ≤ 3)

where (ijk) is an even permutation of (123). The algebra for quaternions is denoted
by Q.

A real quaternion can also be given the form q = sq + vq where sq = a0 and
vq = a1e1 + a2e2 + a3e3 are the scalar part and vector part of q, respectively [6]. If
q = sq +vq and p = sp +vp are two quaternions in Q. Then the quaternion product
of q and p is given by [6]

q × p = sqsp − 〈vq, vp〉+ sqvp + spvq + vq ∧ vp

where 〈, 〉 and ∧ denote the inner product and vector product of E3, respectively.
The conjugate of q = sq + vq is defined by q̄ = sq − vq. The term q is called

a spatial quaternion whenever q + q̄ = 0 [2]. The quaternion inner product can be
defined as follows:

h : Q×Q→ R, h (q, p) =
1

2
(q × p̄+ p× q̄).

The norm of a quaternion q = a1e1 + a2e2 + a3e3 + a4e4 is defined as [6]

‖q‖2 = h(q, q) = q × q̄ = q̄ × q = a21 + a22 + a23 + a24.

If ‖q‖ = 1, then q is called unit quaternion.
Following the basic concepts above, we can give some definitions and theorems

concerning quaternionic curves.
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Definition 2.1.([2]) The three-dimensional Euclidean space E3 is identified by
the space of the spatial quaternions {q ∈ Q : q + q̄ = 0}. Let I = [0, 1] be an
interval in R, s ∈ I be a parameter and Q a set of quaternions. A curve defined as

α : I ⊂ R→ Q, α(s) =

3∑
i=1

αi(s)ei is called a spatial quaternionic curve.

Definition 2.2.([16]) Let α : I ⊂ R→ Q be a spatial quaternionic curve and s ∈ I
be the arc-length parameter of α. The Frenet vectors and curvatures of the spatial
quaternionic curve α(s) can be given, respectively, as follows:

t(s) = α′(s), n(s) =
α′′(s)

‖α′′(s)‖
, b(s) = t(s)× n(s)

and

k(s) = ‖α′(s)× α′′(s)‖ , r(s) =
h(α′(s)× α′′(s), α′′′(s))

‖α′(s)× α′′(s)‖2
,

where the prime denotes the derivative with respect to s, k(s) and r(s), which are
called the curvature and torsion of the spatial quaternionic curve α(s), respectively.

Moreover, the following relationship between the Frenet vectors holds [8]:

t(s)× t(s) = n(s)× n(s) = b(s)× b(s) = −1,

t(s)× n(s) = b(s) = −n(s)× t(s),
n(s)× b(s) = t(s) = −b(s)× n(s),

b(s)× t(s) = n(s) = −t(s)× b(s).

Theorem 2.3.([2]) Let α : I ⊂ R → Q, α(s) =

3∑
i=1

αi(s)ei be an arc-lengthed

spatial quaternionic curve with Frenet frame {t, n, b} and curvatures {k, r}. Then
the Frenet formulae of the quaternionic curve α(s) can be given in matrix form as
follows:  t′

n′

b′

 =

 0 k 0
−k 0 r
0 −r 0

 t
n
b

 .
Definition 2.4.([2]) The four-dimensional Euclidean space E4 is identified by the
space of the quaternions. Let I = [0, 1] be an interval in R, s ∈ I be a parameter

and Q a set of quaternions. A curve defined by β : I ⊂ R → Q, β(s) =

3∑
i=0

βi(s)ei

is called a quaternionic curve.

Definition 2.5.([16]) Let β : I ⊂ R→ Q, β(s) =

3∑
i=0

βi(s)ei be a quaternionic curve

and s ∈ I be the arc-length parameter of β. The Frenet vectors and curvatures of



380 Burak Şahiner

β(s) can be given respectively as follows:

T (s) = β′(s),

N(s) =
β′′(s)

‖β′′(s)‖
,

B1(s) = η B2(s)× T (s)×N(s), (η = ±1)

B2(s) = η
T (s)×N(s)× β′′′(s)

‖T (s)×N(s)× β′′′(s)‖
,

and
K(s) = ‖β′′(s)‖ ,

k(s) =
‖T (s)×N(s)× β′′′(s)‖

‖β′′(s)‖
,

r(s)−K(s) =
h(β(ıv)(s), B2(s))

‖T (s)×N(s)× β′′′(s)‖
,

where the prime denotes the derivative with respect to s, K(s), k(s) and r(s)−K(s),
which are called the principal curvature, torsion and bitorsion of β, respectively,
and B2(s)× T (s)×N(s) is the ternary product of the vectors.

Theorem 2.6.([2]) Let β : I ⊂ R → Q, β(s) =

3∑
i=0

βi(s)ei be a quaternionic curve

in E4 with Frenet frame {T,N,B1, B2} and curvatures {K, k, r −K}. Then the
Frenet formulae for the quaternionic curve β(s) can be given in matrix form as
follows: 

T ′

N ′

B
′

1

B
′

2

 =


0 K 0 0
−K 0 k 0

0 −k 0 (r −K)
0 0 −(r −K) 0




T
N
B1

B2

 .
Definition 2.7.([9]) A spatial quaternionic curve α is called a spatial quaternionic
helix if its unit tangent vector t makes a constant angle with a fixed unit quaternion
U .

Theorem 2.8.([9]) Let α be a spatial quaternionic curve with nonzero curvatures.
Then α is a spatial quaternionic helix if and only if the following applies:

r

k
= constant .

Definition 2.9.([10]) A spatial quaternionic curve α is called the spatial quater-
nionic slant helix if its unit normal vector n makes a constant angle with a fixed
unit quaternion U .
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Theorem 2.10.([10]) Let α be a spatial quaternionic curve with nonzero curvatures.
Then α is a spatial quaternionic slant helix if and only if the following applies:

k2

(r2 + k2)
3/2

( r
k

)′

= constant.

3. Spatial Quaternionic Direction Curves

In this section, we define spatial quaternionic principal-direction and principal-
donor curves in Euclidean 3-space and obtain some relationships between these
curves.

For a spatial quaternionic curve α : I → E3 with Frenet frame {t, n, b}, consider
a quaternion valued function X given by

(3.1) X(s) = x(s) t(s) + y(s) n(s) + z(s) b(s),

where x, y and z are differentiable functions of s which is the arc-length parameter
for α. It is assumed that X is unit, i.e, the following equality holds:

(3.2) x2(s) + y2(s) + z2(s) = 1.

By differentiating equation (3.2), we have the following:

(3.3) xx′ + yy′ + zz′ = 0.

The spatial quaternionic curve ᾱ(s̄) defined by
dᾱ

ds̄
= X(s) is called the spatial

quaternionic integral curve of X(s). Since X is unit, it is clear that the arclength
parameter s̄ of ᾱ is equal to s+ c, where c is a constant. Without loss of generality,
we can assume that s̄ = s. The spatial quaternionic curve ᾱ is unique up to
translation.

Now, we can give the definitions for the spatial quaternionic X-direction curve,
spatial quaternionic X-donor curve, spatial quaternionic principal-direction curve
and the spatial quaternionic principal-donor curve in E3 in the following sections.

Definition 3.1. Let α be a spatial quaternionic curve in E3 and X be a quaternion-
valued function satisfying equations (3.1) and (3.2). The spatial quaternionic
integral curve ᾱ : I → E3 of X is called the spatial quaternionic X-direction curve
of α. The curve α whose spatial quaternionic X-direction curve is ᾱ is called the
spatial quaternionic X-donor curve of ᾱ.

Definition 3.2. Let α be a spatial quaternionic curve in E3. The spatial
quaternionic integral curve ᾱ of n(s) in (3.1) is called the spatial quaternionic
principal-direction curve. In other words, a spatial quaternionic principal-direction
curve is a spatial quaternionic integral curve of X(s) with x(s) = z(s) = 0, y(s) = 1
in (3.1). Moreover, α is called the spatial quaternionic principal-donor curve of ᾱ.
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With the aid of Definition 3.2, we can produce the following theorem:

Theorem 3.3. Let α be a spatial quaternionic curve in E3 with Frenet frame
{t, n, b} and curvatures {k, r}, and let ᾱ be the spatial quaternionic principal-
direction curve of α with Frenet frame

{
t̄, n̄, b̄

}
and curvatures

{
k̄, r̄

}
. The principal

curvature k̄ and the torsion r̄ of the spatial quaternionic principal-direction curve
ᾱ of α can be given, respectively, as follows:

k̄ =
√
k2 + r2 and r̄ =

k2

k2 + r2

( r
k

)′

.

Proof. Since ᾱ is the spatial quaternionic principal-direction curve of α, the
parameter s can be used as the arc-length parameter for both the spatial

quaternionic curves α and ᾱ. From Definition 3.2, we know that t̄ =
dᾱ

ds
= n.

By taking the derivative, we have t̄′ = n′ = −kt+ rb, where the prime indicates the
derivative with respect to s. Since t̄′ = k̄n̄, we get k̄ =

√
k2 + r2. The second and

third derivates of ᾱ are found respectively as follows:

ᾱ′′ = n′ = −kt+ rb

and

ᾱ′′′ = −k′t− k2n+ r′b− r2n

From Definition 2.2, we get r̄ =
k2

k2 + r2

( r
k

)′

. Note that r̄ can also be found by

using the equality r̄ = −h(b̄′, n̄). Moreover, the principal normal and binormal
vector fields of ᾱ can also be obtained as

n̄ = − k√
k2 + r2

t+
r√

k2 + r2
b,

and

b̄ = t̄× n̄ =
r√

k2 + r2
t+

k√
k2 + r2

b,

respectively. 2

On the other hand, the curvatures of spatial quaternionic principal-donor curve
α can be given in terms of the curvatures of ᾱ as given in following theorem.

Theorem 3.4. Let α be the spatial quaternionic curve in E3 with Frenet frame
{t, n, b} and curvatures {k, r} and let ᾱ be the spatial quaternionic principal-
direction curve of α with Frenet frame

{
t̄, n̄, b̄

}
and curvatures {k̄, r̄}. The principal

curvature k and the torsion r of spatial quaternionic principal-donor curve α of ᾱ
can be given, respectively, as follows:

k(s) = k̄(s) cos

(∫
r̄(s)ds

)
and r(s) = k̄(s) sin

(∫
r̄(s)ds

)
.
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Proof. Let the ratio
r(s)

k(s)
= f(s). Then the torsion of the spatial quaternionic

principal-direction curve can be rewritten as:

r̄(s) =
f ′(s)

1 + f2(s)
.

This means that

∫
r̄(s)ds = arctan(f(s)). So we get the following:

f(s) = tan

(∫
r̄(s)ds

)
.

By putting
r(s)

k(s)
instead of f(s), using trigonometric relationships, and taking into

account that k̄ =
√
k2 + r2, we have:

κ(s) = κ̄(s) cos

(∫
τ̄(s)ds

)
and

τ(s) = κ̄(s) sin

(∫
τ̄(s)ds

)
. 2

From Theorem 3.3, we have the following corollary.

Corollary 3.5. Let α be a spatial quaternionic curve in E3 with curvatures {k, r}
and let ᾱ be a spatial quaternionic principal-direction curve of α with curvatures
{k̄, r̄}. The following relationship is satisfied:

r̄

k̄
=

k2

(k2 + r2)3/2

( r
k

)′

.

Thus, we can produce the following theorem that can be used to construct a
spatial quaternionic slant helix from a spatial quaternionic helix by using the spatial
quaternionic direction curves.

Theorem 3.6. Let α be a spatial quaternionic curve with nonzero curvatures and
let ᾱ be the spatial quaternionic principal-direction curve of α. The curve α is a
spatial quaternionic helix if and only if ᾱ is a spatial quaternionic slant helix.

Proof. The proof is clear from Corollary 3.5, Theorem 2.10, and Theorem 2.12. 2

Now, we can discuss the condition where the spatial quaternionic principal-
direction curve of ᾱ is equal to α, while ᾱ is a spatial quaternionic integral curve of
(3.1).
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Proposition 3.7. Let α be a spatial quaternionic curve and ᾱ be a spatial
quaternionic integral curve of (3.1). The spatial quaternionic principal-direction
curve of ᾱ is equal to α if and only if the functions x(s), y(s), z(s) in (3.1) are as
follows:

x(s) = 0, y(s) = sin

(∫
τ(s)ds

)
, z(s) = cos

(∫
τ(s)ds

)
.

Proof. By differentiating (3.1) with respect to s using the Frenet formulae for the
spatial quaternionic curves α and ᾱ, and the fact that X = t̄, we have the following:

k̄n̄ = (x′ − yk)t+ (y′ + xk − zr)n+ (z′ + yr)b.

On the other hand, since α is the spatial quaternionic principal-direction curve of
ᾱ, i.e., α′ = t = n̄, we have the following system of differential equations

(3.4)
x′ − yk = k̄
y′ + xk − zr = 0
z′ + yr = 0

 .

Multiplying the first, second and third equations in (3.4) by x, y and z, respectively,
and adding the results, we have:

(3.5) xx′ + yy′ + zz′ = xk̄.

From equations (3.3) and (3.5), we have x = 0. By substituting the variable x in
system (3.4), the following solution is obtained:

x(s) = 0, y(s) = sin

(∫
τ(s)ds

)
, z(s) = cos

(∫
τ(s)ds

)
. 2

4. Quaternionic Direction Curves

In this section, we give definitions of the quaternionic V−direction and
quaternionic principal-direction curves and study the relationship between a given
quaternionic curve and its quaternionic principal-direction curve.

Let β : I ⊂ R→ Q, β(s) =

3∑
i=0

βi(s)ei be a quaternionic curve in E4 with Frenet

frame {T,N,B1, B2} and curvatures {K, k, r −K}, where ei, (i = 0, 1, 2, 3) are
quaternionic units as mentioned in the Preliminaries. Consider a quaternion valued
function V in E4 given by

(4.1) V (s) = u1(s)T (s) + u2(s)N(s) + u3(s)B1(s) + u4(s)B2(s),

where ui (i = 1, 2, 3, 4) are differentiable functions of s which is the arc-length
parameter of β. If we take the quaternion valued function V as unit, the following
equality holds

(4.2) u21(s) + u22(s) + u23(s) + u24(s) = 1.
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By differentiating equation (4.2), we have

(4.3) u1u
′
1 + u2u

′
2 + u3u

′
3 + u4u

′
4 = 0.

The quaternionic curve β̄(s̄) defined by
dβ̄

ds̄
= V (s) is called the quaternionic integral

curve of V (s). Since V (s) is unit, it is clear that the arc-length parameter of β̄ is
equal to s+c, where c is a constant. Without loss of generality, we can assume that
s̄ = s. The quaternionic curve β̄ is unique up to translation in E4.

Now, we can give definitions for the quaternionic V -direction, quaternionic V -
donor, quaternionic principal-direction, and quaternionic principal-donor curves.

Definition 4.1. Let β : I ⊂ R → Q, β(s) =

3∑
i=0

βi(s)ei be a quaternionic curve

and V (s) a quaternion-valued function in E4 satisfying equations (4.1) and (4.2).
The quaternionic integral curve β̄ : I ⊂ R → Q of V (s) is called the quaternionic
V -direction curve of β. The quaternionic curve β whose quaternionic V -direction
curve is β̄ is called the quaternionic V -donor curve of β̄ in E4.

Definition 4.2. Let β : I ⊂ R → Q, β(s) =

3∑
i=0

βi(s)ei be a quaternionic curve

in E4. A quaternionic curve β̄ of N(s) in (4.1) is called the quaternionic principal-
direction curve of β, and β is called the quaternionic principal-donor curve of β̄.

By using Definition 4.2, we can produce the following theorem:

Theorem 4.3. Let β be a quaternionic curve in E4 with Frenet frame {T,N,B1, B2}
and curvatures {K, k, r−K} and β̄ be the quaternionic principal-direction curve of
β with Frenet frame

{
T̄ , N̄ , B̄1, B̄2

}
and curvatures {K̄, k̄, r̄ − K̄}. The principal

curvature K̄, the torsion k̄, and the bitorsion r̄ − K̄ of the quaternionic principal-
direction curve β̄ can be given respectively as:

K̄ =
√
K2 + k2,

k̄ =

√
k4(r −K)2 +K2k2(r −K)2 + (−Kk′ + kK ′)2

K2 + k2
,

r̄ − K̄ =

√
K2 + k2

{
k
[
(r −K)(−K ′′k + k′′K −Kk(r −K)2 + 2K ′k′) + (r −K)′(−2Kk′ + kK ′)

]
− 2Kk′2(r −K)

}
k4(r −K)2 +K2k2(r −K)2 + (−Kk′ + kK ′)2

Proof. Since β̄ is the quaternionic principal-direction curve of β, the parameter
s can be used for the arc-length parameter of both quaternionic curves β and β̄.
Since β̄ is the quaternionic principal-direction curve of β, we have β̄′ = T̄ = N . By
differentiating this equality and using Frenet formulas, we get T̄ ′ = K̄N̄ = N ′ =
−KT + kB1. So the principal curvature of β̄ is obtained as K̄ =

√
K2 + k2. The

principal normal vector field of β̄ is also found to be:

N̄ = − K√
K2 + k2

T +
k√

K2 + k2
B1.
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By taking the third order derivative of β̄ and using Frenet formulas, we get the
following:

β̄′′′ = −K ′T − (K2 + k2)N + k′B1 + k(r −K)B2.

By using Definition 2.5, the torsion and bitorsion of the quaternionic principal-
direction curve β̄ can be respectively found as follows:

k̄ =

√
k4(r −K)2 +K2k2(r −K)2 + (−Kk′ + kK ′)2

K2 + k2

and

r̄ − K̄ =

√
K2 + k2

{
k
[
(r −K)(−K ′′k + k′′K −Kk(r −K)2 + 2K ′k′) + (r −K)′(−2Kk′ + kK ′)

]
− 2Kk′2(r −K)

}
k4(r −K)2 +K2k2(r −K)2 + (−Kk′ + kK ′)2

Moreover, the first and second binormal vector fields of the quaternionic principal-
direction curve β̄ can be obtained respectively as follows:

B̄1 =
1√

k4(r −K)2 +K2k2(r −K)2 + (−Kk′ + kK ′)2

[
k(kK ′ − k′K)√

K2 + k2
T +

K(kK ′ − k′K)√
K2 + k2

B1 −
k3(r −K) +K2k(r −K)√

K2 + k2
B2

]
,

and

B̄2 =
1√

k4(r −K)2 +K2k2(r −K)2 + (−Kk′ + kK ′)2

[
k2(r −K)√
K2 + k2

T +
Kk(r −K)√
K2 + k2

B1 +
−Kk′ + kK ′
√
K2 + k2

B2

]
, 2

Now, we can discuss the condition where the quaternionic principal-direction
curve of β̄ is equal to β, while β̄ is a quaternionic integral curve of (4.1).

Proposition 4.4. Let β be a quaternionic curve and β̄ be a quaternionic integral
curve of (4.1). The quaternionic principal-direction curve of β̄ is equal to β if and
only if u1 = 0 and the following system of differential equations is satisfied:

u′2 = ku3

u′3 = −ku2 + (r −K)u4

u′4 = −(r −K)u3


where ui, (i = 1, 2, 3, 4) in (4.1).

Proof. By differentiating (4.1) with respect to s and using Theorem 2.6, we have

V ′ = (u′1−u2K)T+(u1K+u′2−u3k)N+(u2k+u′3−u4(r−K))B1+(u3(r−K)+u′4)B2.

Since β̄ is a quaternionic integral curve of (4.1), β̄′′ = T̄ ′ = K̄N̄ = V ′. On the
other hand, since the quaternionic principal-direction curve of β̄ is equal to β, we
get β′ = T = N̄ . Thus, we have the following system of differential equations:

(4.4)

u′1 = Ku2 + K̄ 6= 0

u′2 = −Ku1 + ku3

u′3 = −ku2 + (r −K)u4

u′4 = −(r −K)u3

 .
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Multiplying the first, second, third and fourth equations in (4.4) by u1, u2, u3, u4,
respectively, and adding the results, we obtain the following:

(4.5) u1u
′
1 + u2u

′
2 + u3u

′
3 + u4u

′
4 = K̄u1.

From equations (4.3) and (4.5), we obtain u1 = 0. Thus, system (4.4) can be
rewritten as follows:

(4.6)

u2 = −K̄
K
6= 0

u′2 = ku3

u′3 = −ku2 + (r −K)u4

u′4 = −(r −K)u3


.

Specifically, if the ratio
K̄

K
is known, a solution of system (4.6) can be found as

follows. By changing the variable u(s) =
∫ s

0
(r(s) − K(s))ds, system (4.6) can be

rewritten:

(4.7)

du2
du

=
k

r −K
u3

du3
du

= − k

r −K
u2 + u4

du4
du

= −u3


.

By differentiating the second equation and using the third equation of system (4.7),
we get

(4.8)
d2u3
du2

+ u3 =
d

du
(A(u)),

where A(u) =
kK̄

(r −K)K
. By solving differential equation (4.8), we find the

following:

u3 = cosu

∫
A(u) cosudu+ sinu

∫
A(u) sinudu.

By using the third equation of system (4.7), we get

u4 = − sinu

∫
A(u) cosudu+ cosu

∫
A(u) sinudu.

Thus, we have a solution of system (4.4):

u1 = 0,

u2 = −K̄
K
,

u3 = cosu
∫
A(u) cosudu+ sinu

∫
A(u) sinudu,

u4 = − sinu
∫
A(u) cosudu+ cosu

∫
A(u) sinudu,
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where u(s) =

∫ s

0

(r(s)−K(s))ds. 2
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