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Abstract. In the present paper, we establish relationship between continued frac-

tion U(−q) of order 12 and Ramanujan’s cubic continued fraction G(−q) and G(qn) for

n = 1, 2, 3, 5 and 7. Also we evaluate U(q) and U(−q) by using two parameters for Ra-

manujan’s theta-functions and their explicit values.

1. Introduction

Throughout this paper, we assume that |q| < 1 and for any complex number a,

(a; q)∞ := lim
n→∞

n−1∏
k=0

(1− aqk),

where n is a positive integer. In Chapter 16 of his second notebook [5, p. 34], [21, p.
197], S. Ramanujan developed the theory of theta-functions and his theta-function
is defined as follows:

f(a, b) :=

∞∑
n=∞

a
n(n+1)

2 b
n(n−1)

2 = (−a; ab)∞(−b; ab)∞(ab; ab)∞, |ab| < 1.

The three important special cases of f(a, b) [5, p.36] are

ϕ(q) := f(q, q) =

∞∑
n=−∞

qn
2

= (−q; q2)2
∞(q2; q2)∞,
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ψ(q) := f(q, q3) =

∞∑
n=0

q
n(n+1)

2 =
(q2; q2)∞
(q; q2)∞

and

f(−q) := f(−q,−q2) =

∞∑
n=−∞

(−1)nq
n(3n−1)

2 = (q; q)∞.

After Ramanujan, define

χ(q) := (−q; q2)∞.

Recently H. M. Srivastava et. al. [25] proved two q-identities which provide rela-
tionship between f(−q), ϕ(q) and ψ(q), by using well known Jacobi’s triple product
identity. These q-identities are analogous to Ramanujan’s identities.

The celebrated Rogers−Ramanujan continued fraction is defined as

(1.1) R(q) := q
1
5

(q; q5)∞(q4; q5)∞
(q2; q5)∞(q3; q5)

=
q

1
5

1 +

q

1+

q2

1 +

q3

1 +...
.

On page 365 of his ‘Lost’ notebook [22], Ramanujan recorded five identities showing
the relationships betweenR(q) and five continued fractionsR(−q), R(q2), R(q3), R(q4)
and R(q5). He also recorded these identities at the scattered places of his Notebooks
[21]. L. J. Rogers [23] established the modular equations relating R(q) and R(qn)
for n = 2, 3, 5 and 11. Recently, K. R. Vasuki and S. R. Swamy [28] found the
modular equations relating R(q) and R(q11).

Recently C. Adiga et. al. [1] have established several modular relations for the
Rogers−Ramanujan type functions of order eleven which analogous to Ramanuja’s
forty identities for Rogers−Ramanujan functions and also they established certain
interesting partition-theoretic interpretation of some of the modular relations and
H. M. Srivastava and M. P. Chaudhary [24] established a set of four new results
which depicit the interrelationships between q-product identities, continued fraction
identities and combinatorial partition identities.

The Ramanujan’s cubic continued fraction G(q) is defined as

(1.2) G(q) :=
q1/3

1 +

q + q2

1 +

q2 + q4

1 +

q3 + q6

1 +...
.

The continued fraction (1.2) was first introduced by Ramanujan in his second letter
to G. H. Hardy [16]. He also recorded the continued fraction (1.2) on p. 365 of
his ‘Lost’ notebook [22] and claimed that there are many results for G(q) similar
to the results obtained for Rogers−Ramanujan continued fraction (1.1). Motivated
by Ramanujan’s claim H. H. Chan [11] proved three identities giving the relations
between G(q) and three continued fractions G(−q), G(q2) and G(q3). Further N. D.
Baruah [3], established the modular relations between G(q) and G(qn) for n = 5
and 7.
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The Ramanujan-Göllnitz-Gordon continued fraction [22, p. 44], [14, 15] is de-
fined as

(1.3) H(q) := q
1
2

(q; q8)∞(q7; q8)∞
(q3; q8)∞(q4; q8)∞

=
q1/2

1 + q+

q2

1 + q3
+

q4

1 + q5
+...

.

H. H. Chan and S. S. Hang [12] and K. R. Vasuki and B. R. Srivatsa Kumar [27]
established the relationships between H(q) and H(qn) with n = 3, 4, 5, 11 by using
the modular equations deduced by Ramanujan. Recently, B. Cho, J. K. Koo and
Y. K. Park [13] extended the results cited above for the continued fraction (1.3)
to all odd prime p by computing the affine models of modular curves X(Γ) with
Γ = Γ1(8)

⋂
Γ0(16p).

The continued fraction
(1.4)

U(q) :=
qf(−q,−q11)

f(−q5,−q7)
=
q(1− q)
(1− q3) +

q3(1− q2)(1− q4)

(1− q3)(1 + q6) +

q3(1− q8)(1− q10)

(1− q3)(1 + q12) +...

,

was established by M. S. M. Naika et. al. [18] as a special case of fascinating
continued fraction identity recorded by Ramanujan in his second notebook [21,
p. 74] and they have established a modular relationship between the continued
fraction U(q) and U(qn) with n = 3 and 5. Recently K. R. Vasuki et. al. [26]
have established a relationship between the continued fraction U(q) and U(qn) with
n = 7, 9, 11 and 13.

Also in his ‘Lost’ notebook [22], Ramanujan recorded the following continued
fraction identity

G(aq, λq, b; q)

G(a, λ, b; q)
=

1

1+

aq + λq

1 +

bq + λq2

1 +

aq2 + λq3

1 +

bq2 + λq4

1 +...

=
1

1 + aq+

λq − abq2

1 + aq2 + bq+

λq2 − abq4

1 + aq3 + bq2
+...

,

where

G(a, λ, b; q) =

∞∑
n=0

q
n(n+1)

2 (−λ/a; q)na
n

(q; q)n(−bq; q)n
.

For convenience, we use the following notations:

F1(a, b, λ; q) :=
G(aq, λq, b; q)

G(a, λ, b; q)

and

F1(a, b,−b; q) =: F (a, b; q) :=
G(aq,−bq, b; q)
G(a,−b, b; q)

.

C. Adiga et. al. [2], have established some relation between Ramanujan’s con-
tinued fraction F (a, b; q) and obtained three equivalent integral representations
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of F (−1, 1; q) and some modular equations for the same. Also they found con-
tinued fraction representations for the Ramanujan-Weber class invariants. Fur-
ther, they deduced some algebraic numbers and transcendental numbers involving
F (−1, 1; q) + 1, the Ramanujan-Göllnitz-Gordon continued fraction H(q) and the
Dedekind eta function.

At the end of his brief communication [19, 20] announcing his proofs of the
Rogers−Ramanujan identities, Ramanujan remarks, “I have now found an algebraic
relation between G(q) and H(q), Viz,:

H(q)G11(q)− q2G(q)H11(q) = 1 + 11qG6(q)H6(q),

Another noteworthy formula is

H(q)G(q11)− q2G(q)H(q11) = 1.

Each of these formulae is the simplest of a large class”. But Ramanujan has not
shown how he had proved these two identities and these are two from the list of forty
identities involving G(q) and H(q). Rogers [23] established ten of the identities and
Watson [29] proved eight of the identities, but two of them in the group that Rogers
had proved. These forty identities were first brought before the mathematical world
by B. J. Birch [9] who found Watson’s hand written copy of Ramanujan list of forty
identities in the Oxford University Library. D. Bressoud [10], in his Ph. D. thesis
proved fifteen from the list of forty identities. After the work of Rogers, Watson
and Bressoud, nine remain to be proved. A. J. F. Biagioli [8] used modular forms
to prove eight of them. In 2007, B. C. Berndt et. al. [6] have proved thirty
five of the forty identities and also established several new identities involving the
Rogers−Ramanujan functions by using modular equations found by Ramanujan.
Recently C. Adiga et. al. [1] have established several modular relations for the
Rogers−Ramanujan type functions of order eleven which analogous to Ramanujan’s
forty identities for Rogers−Ramanujan functions and also they established certain
interesting partition-theoretic interpretation of some of the modular relations.

Next we introduce the Ramanujan−Weber class invariants. For q = e−π
√
n,

where n is a positive real number, define the two class invariants Gn and gn by

Gn = 2−1/4q−1/24χ(q)

and
gn = 2−1/4q−1/24χ(−q).

where χ(q) is as defined earlier. Ramanujan first introduced the above class invari-
ants in his paper ‘Modular equations and approximations to π’. Ramanujan [21]
recorded the values of 107 class invariants in his first notebook. H. Weber [30] first
constructed a table consisting of 50 values of class invariants earlier to Ramanujan.
Weber preliminarily was motivated to calculate class so that he could construct
Hilbert class fields. Ramanujan without the knowledge of Weber’s work, indepen-
dently calculated class invariants for different reasons. Furthermore, S. Bhargava,
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K. R. Vasuki and B. R. Srivatsa Kumar [7], J. Yi [31], N. D. Baruah [4], M. S. M.
naika and K. S. Bairy [17] have obtained several values for Gn and gn. Recently
J. Yi [31] defined two parametrization hk,n and h′k,n for the theta function ϕ and
obtained some interesting properties of them for all real numbers k and n and they
are defined as

(1.5) hk,n =
ϕ(e−π

√
n/k)

k1/4ϕ(e−π
√
nk)

and

h′k,n =
ϕ(e−2π

√
n/k)

k1/4ϕ(e−2π
√
nk)

.

Motivated by the above work, in the present paper, we establish the relationship
between U(−q) and the other continued fractions G(−q) and G(qn) for n = 1, 2, 3, 5
and 7. Since the working method is monotonous, we skip the detailed proof of
U(−q) and G(qn) for n = 3, 5 and 7. Also we evaluate U(q) and U(−q) by using
two parameters for Ramanujan’s theta-functions and their explicit values.

2. Preliminary Results

Theorem 2.1 We have

(2.1) 8G3(q) = 1− ϕ4(−q)
ϕ4(−q3)

.

Proof. For a proof, see Chapter 20 [5, p. 345]. 2

Theorem 2.2 We have

(2.2)
ϕ(q)

ϕ(q3)
=

1 + U(q)

1− U(q)
.

Proof. For a proof, see [26]. 2

Theorem 2.3 We have

(2.3) G(q) +G(−q) + 2G2(−q)G2(q) = 0,

(2.4) G2(q) + 2G2(q2)G(q)−G(q2) = 0

and

(2.5) G3(q) = G(q3)
1−G(q3) +G2(q3)

1 + 2G(q3) + 4G2(q3)
.

Proof. For a proof, see [11]. 2
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Theorem 2.4 If v = G(q) and w = G(q5), then we have

(2.6) v6−vw+5vw(v3 +w3)(1−2vw)+w6 = v2w2(16v3w3−20v2w2 +20vw−5).

Proof. For a proof, see [3]. 2

Theorem 2.5 If v = G(q) and w = G(q7), then we have

v8 − vw − 56v3w3(v2 + w2) + 7vw(v3 + w3)(1− 8v3w3)(2.7)

+ 28v2w2(v4 + w4)

= −w8 − v4w4(21− 64v3w3).

Proof. For a proof, see [3]. 2

Theorem 2.6 If a = π1/4

Γ(3/4) , then

(i) ϕ(e−2π) = a2−1/8,

(ii) ϕ(e−4π) = a2−7/16(
√

2 + 1)1/4,

(iii) ϕ(e−6π) = a(1+
√

3+
√

2 4√27)1/3

211/2433/8(
√

3−1)1/6
,

(iv) ϕ(−e−12π) = a2−19/483−3/8(2−3
√

2+35/4+33/4+33/4)1/3

(
√

2−1)1/12(
√

3+1)1/6(−1−
√

3+
√

2.33/4)1/3
.

Proof. For a proof one can see [31]. 2

3. Main Results

Theorem 3.1 If u = U(−q) and v = G(q), then

(3.1) v3(1− u)4 + u(1 + u2) = 0.

Proof. Replacing q to −q in (2.2) and then on raising to the power 4 we have

ϕ4(−q)
ϕ4(−q3)

=

(
1 + U(−q)
1− U(−q)

)4

.

On using the above in (2.1), we have the result. 2

Theorem 3.2 If u = U(−q) and w = G(−q), then

w3 =
u(1− u)2

(1 + u2)2
.

Proof. Eliminating G(q) between (2.3) and (3.1) we have
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(w3 + 2w3u2 + w3u4 − u+ 2u2 − u3)(u4 − 2u3 + 8w3u2 + 2u2 − 2u+ 1) = 0.

It follows from the definition of u and w that

(3.2) u = U(−q) = 1 + q − q5 − q6 − q7 + ...

and

(3.3) w = G(−q) = (−q)1/3(1 + q + 2q3 − 2q4 + q5 + ...).

By using (3.2) and (3.3) in the above factors, we see that first factor becomes

−q(4 + 21q + 45q2 + 80q3 + 117q4 + 97q5 + ...)

and the second factor becomes

−q(8 + 38q + 78q2 + 127q3 + 184q4 + 116q5 + ...).

Thus, the second factor does not vanish. Hence by identity theorem, one can see
that, the second factor does not tend to zero, whereas the first factor tends to zero
in some neighbourhood of q = 0. Hence by analytic continuation in |q| < 1, we have

w3 + 2w3u2 + w3u4 − u+ 2u2 − u3 = 0. 2

Theorem 3.3 If u = U(−q) and w = G(q2), then

w3 =
u2

(u2 + 1)(u− 1)2
.

Proof. On eliminating G(q) between (2.4) and (3.1) we have

(2u2w3+u4w3−2uw3−2u3w3+w3−u2)(u4+8u3w3−16u2w3+2u2+8uw3+1) = 0.

Replacing −q to q2 in (3.3), we obtain

w = G(q2) = q2/3(1− q2 − 2q6 − 2q8 + ...).

By using (3.2) and the last relation in the same factors as above, we see that the
first factor becomes

−1− 2q − q2 + 2q4 + 4q5 − q6 − 2q7 + ...

and the second factor becomes

4 + 8q + 8q2 + 4q3 + 9q4 − 48q6 − 60q7 + ...

As discussed in the previous theorem, the second factor does not vanish in the
neighbourhood of q = 0. Hence we must have

2u2w3 + u4w3 − 2uw3 − 2u3w3 + w3 − u2 = 0. 2
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Theorem 3.4 If u = U(−q) and w = G(q3), then

(1 + u2)
(
(u− 1)2w + (1 + 4w2)u)

)
− w2(1− w)(u− 1)4 = 0.

Proof. Eliminating G(q) between (2.5) and (3.1), we have the result. 2

Theorem 3.5 If u = U(−q) and w = G(q5), then

(s4 − s3 − 24s2 + 4s+ 86)w3 − 5(3s4 + 5s3 − 144s2 − 87s+ 1532)w6

+ 20(3s4 + 3s3 − 161s2 − 32s+ 1936)w9

− 5(4s4 − 295s3 + 1524s2 + 4336s− 25408)w12

− 2(45s4 − 640s3 + 1440s2 + 11520s− 41728)w15

− (u(u2 + 1)(u− 1)4 − (u− 1)24)w18

+ u6(u2 + 1)6 = 0.

where t = u+ 1
u and s = t+ 4

t .

Proof. The result directly follows from (2.6) and (3.1), by eliminating G(q) using
Maple. 2

Theorem 3.6 If u = U(−q) and w = G(q7), then

w3(s6 − 3s5 − 33s4 + 71s3 + 312s2 − 348s− 552)

− 7w6(3s6 − 39s5 + 57s4 + 1407s3 − 5304s2 − 12448s+ 58336)

+ 7w9(21s6 − 507s5 + 2082s4 + 13224s3 − 74344s2 − 81952s+ 570368)

− 7w12(49s6 − 1257s5 + 5676s4 + 23950s3 − 154344s2 − 65184s+ 805760)

− 28w15(3s6 − 975s5 + 8686s4 − 2224s3 − 146400s2 + 283520s+ 91648)

+ 28w18(21s6 + 556s5 − 8936s4 + 28432s3 + 79808s2 − 590080s+ 920576)

+ 8w21(21s6 + 84s5 − 7392s4 + 56000s3 − 21504s2 − 946176s+ 2297856)

+ t−1(w24(t− 2)14 + u8(u2 + 1)8(t− 2)−2) = 0.

where t = u+ 1
u and s = t+ 4

t .

Proof. By using (2.7) and (3.1), we arrive at the required result. 2
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4. Evaluations of U(q)

Theorem 4.1. We have

(i) U(e−π) =
4
√

3
4
√

2
√

3− 3− 1
4
√

3
4
√

2
√

3− 3 + 1
,

(ii) U(e−π/3) =
4
√

2
√

3 + 3− 1
4
√

2
√

3 + 3 + 1
,

(iii U(e−
√

3π) =
1− 3
√

2 + 3
√

4− 4
√

3

1− 3
√

2 + 3
√

4 + 4
√

3
,

(iv) U(e−π/3
√

3) =
1 + 3
√

2− 4
√

3

1 + 3
√

2 + 4
√

3
.

Proof. (i) Setting k = n = 3 in (1.5), we find that

h3,3 =
ϕ(e−π)

31/4ϕ(e−3π)
.

From (2.2), it is easy to see that

(4.1) U(q) =

ϕ(q)
ϕ(q3) − 1

ϕ(q)
ϕ(q3) + 1

.

From Theorem 4.10(i) [31], we have

(4.2)
ϕ(e−π)

ϕ(e−3π)
= 31/4(2

√
3− 3)1/4.

Substituting q = e−π in (4.1), we arrive at

U(e−π) =

ϕ(e−π)
ϕ(e−3π) − 1

ϕ(e−π)
ϕ(e−3π) + 1

.

Using (4.2) in the above, we complete the proof of (i).
(ii) Setting k = 3, n = 1/3 in (1.5) and then by using Theorem 4.10(ii) [31], we have

ϕ(e−π/3)

ϕ(e−π)
= (2
√

3 + 3)1/4.

Substituting q = e−π/3 in (4.1) and using the above, we complete the proof of (ii).
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(iii) Setting k = 3, n = 9 in (1.5) and from Theorem 4.10(iii) [31], we have

ϕ(e−
√

3π)

ϕ(e−3
√

3π)
=

1

31/4
(1− 3

√
2 +

3
√

4).

Using (4.1) with q = e−
√

3π and the above, we complete the proof of (iii).
(iv) Setting k = 3, n = 1/9 in (1.5) and using Theorem 4.10(iv) [31], we find that

ϕ(e−π/3
√

3)

ϕ(eπ/
√

3)
=

1 + 3
√

2

31/4
.

Using the above with q = e−π/3
√

3 in (4.1), we complete the proof of (iv). 2

Theorem 4.2. We have

(i) U(e−
√

5π/
√

3) =
4
√

3
√√

5− 1−
√

2
4
√

3(
√√

5− 1 +
√

2
,

(ii) U(e−π/
√

15) =
4
√

3
√√

5 + 1−
√

2
4
√

3
√√

5 + 1 +
√

2
,

(iii) U(e−5π/
√

3) =

4
√

3
(

6
√

5−
√

3
√

5− 3
√

4
)
− 3
√

2

4
√

3
(

6
√

5−
√

3
√

5− 3
√

4
)

+ 3
√

2
,

(iv) U(e−π/5
√

3) =

4
√

3
(

6
√

5 +
√

3
√

5− 3
√

4
)
− 3
√

2

4
√

3
(

6
√

5 +
√

3
√

5− 3
√

4
)

+ 3
√

2
.

Proof. (i) Setting k = 3 and n = 5 in (1.5), we have

h3,5 =
ϕ(e−

√
5π/
√

3)

31/4ϕ(e−
√

15π)
.

From Theorem 4.13(i) [31], we find that

ϕ(e−
√

5π/
√

3)

ϕ(e−
√

15π)
=

31/4(
√

5− 1)1/2

√
2

.

Now substituting q = e−
√

5π/
√

3 in (4.1), and using the above, we deduce the result.
(ii) Setting k = 3 and n = 1/5 in (1.5), note that

h3,5 =
ϕ(e−

√
5π/
√

3)

31/4ϕ(e−
√

15π)
.

From Theorem 4.13(ii) [31], we have
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ϕ(e−π/
√

15)

ϕ(e−
√

3π/
√

15)
= 31/4

(√
5 + 1

2

)1/2

.

Now by using the above with q = e−π/
√

15 in (4.1) , we arrive at the required result.
(iii) Setting k = 3 and n = 25 in (1.5), we find that

h3,25 =
ϕ(e−5π/

√
3)

31/4ϕ(e−5
√

3π)
.

From Theorem 4.13(iii) [31], we have

ϕ(e−5π/
√

3)

ϕ(e−5
√

3π)
=

31/4

21/3

(
51/6 −

√
51/3 − 22/3.

)
Now taking q = e−5π/

√
3 in (4.1) and using the above, we directly obtain the result.

(iv) Setting k = 3 and n = 1/25 in (1.5), we deduce

h3,1/25 =
ϕ(e−π/5

√
3)

31/4ϕ(e−
√

3π/5)
.

Again by Theorem 4.13(iv) [31], we have

ϕ(e−π/5
√

3)

ϕ(e−
√

3π/5)
=

31/4

21/3

(
51/6 +

√
51/3 − 22/3

)
.

Now taking q = e−π/5
√

3 in (4.1) and using the above, we directly obtain the result.
2

Theorem 3.9 We have

(i) U(−e−π/
√

3) =

4
√

3 4

√
(
√

3− 1)− 4

√
(5 + 3

√
3)

4
√

3 4

√
(
√

3− 1) + 4

√
(5 + 3

√
3)
,

(ii) U(−e−π
√

2/3) =

4

√
(3
√

2)− 4

√
(4 + 3

√
2)

4

√
(3
√

2) + 4

√
(4 + 3

√
2)
,

(iii) U(−e−2π) =
3
√

2 8
√

27
6
√√

3− 1− 3
√
t+
√

2 4
√

27
3
√

2 8
√

27
6
√√

3− 1 +
3
√
t+
√

2 4
√

27
,

(iv) U(−e−4π) =
8
√

27
12
√√

2− 1
4
√√

2 + 1 6
√
ta− 24

√
2b

8
√

27
12
√√

2− 1
4
√√

2 + 1 6
√
ta+ 24

√
2b
.
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where a = 3

√√
2 4
√

27)− t, b =
3
√

2− 3
√

2 +
4
√

272 + 4
√

27 and t =
√

3 + 1.

Proof. (i) From Theorem 7.2(i) [3], we have

ϕ(−e−π/
√

3)

ϕ(−e−π
√

3)
=

[
9− 3(2 +

√
3)

1− 3(2 +
√

3)

]1/4

.

Replacing q to −q in (4.1) and then using the above result, we arrive at (i).

(ii) Replacing q to −q in (4.1), using Theorem 7.2(iii) [3] and on simplifying, we
arrive at (ii).
(iii) Replacing q to −q in (4.1), then by using Theorem 2.2 (i) and (iii) [4] and on
simplification, we arrive at (iii).
(iv) Replacing q to −q in (4.1), then by using Theorem 2.2 (ii) and (iv) [4] and on
simplification, we arrive at (iv). 2
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continued fraction, J. Number Theory, 129(4)(2009), 922–947.
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