DOI QR코드

DOI QR Code

Growth Promoting Rhizospheric and Endophytic Bacteria from Curcuma longa L. as Biocontrol Agents against Rhizome Rot and Leaf Blight Diseases

  • Vinayarani, G. (Department of Studies in Biotechnology, University of Mysore) ;
  • Prakash, H.S. (Department of Studies in Biotechnology, University of Mysore)
  • Received : 2017.11.02
  • Accepted : 2018.03.07
  • Published : 2018.06.01

Abstract

Plant growth promoting rhizobacteria and endophytic bacteria were isolated from different varieties of turmeric (Curcuma longa L.) from South India. Totally 50 strains representing, 30 PGPR and 20 endophytic bacteria were identified based on biochemical assays and 16S rDNA sequence analysis. The isolates were screened for antagonistic activity against Pythium aphanidermatum (Edson) Fitzp., and Rhizoctonia solani Kuhn., causing rhizome rot and leaf blight diseases in turmeric, by dual culture and liquid culture assays. Results revealed that only five isolates of PGPR and four endophytic bacteria showed more than 70% suppression of test pathogens in both assays. The SEM studies of interaction zone showed significant ultrastructural changes of the hyphae like shriveling, breakage and desication of the pathogens by PGPR B. cereus (RBacDOB-S24) and endophyte P. aeruginosa (BacDOB-E19). Selected isolates showed multiple Plant growth promoting traits. The rhizome bacterization followed by soil application of B. cereus (RBacDOB-S24) showed lowest Percent Disease Incidence (PDI) of rhizome rot and leaf blight, 16.4% and 15.5% respectively. Similarly, P. aeruginosa (BacDOB-E19) recorded PDI of rhizome rot (17.5%) and leaf blight (17.7%). The treatment of these promising isolates exhibited significant increase in plant height and fresh rhizome yield/plant in comparison with untreated control under greenhouse condition. Thereby, these isolates can be exploited as a potential biocontrol agent for suppressing rhizome rot and leaf blight diseases in turmeric.

Keywords

References

  1. Ahmad, F., Ahmad, I. and Khan, M. S. 2008. Screening of free-living rhizospheric bacteria for their multiple plant growth promoting activities. Microbiol. Res. 163:173-181. https://doi.org/10.1016/j.micres.2006.04.001
  2. Almaghrabi, O. A., Massoud, S. I. and Abdelmoneim, T. S. 2013. Infuence of inoculation with plant growth promoting rhizobacteria (PGPR) on tomato plant growth and nematode reproduction under greenhouse conditions. Saudi J. Biol. Sci. 20:57-61. https://doi.org/10.1016/j.sjbs.2012.10.004
  3. Aravind, R., Kumar, A., Eapen, S. J. and Ramana, K. V. 2009. Endophytic bacterial fora in root and stem tissues of black pepper (Piper nigrum L.) genotype: isolation, identifcation and evaluation against Phytophthora capsici. Lett. Appl. Microbiol. 48:58-64. https://doi.org/10.1111/j.1472-765X.2008.02486.x
  4. Bashan, Y. and De-Bashan, L. E. 2005. Plant growth-promoting. In: Encyclopedia of soils in the environment. Vol. 1, pp. 103-115.
  5. Beneduzi, A., Ambrosini, A. and Passaglia, L. M. 2012. Plant growth-promoting rhizobacteria (PGPR): their potential as antagonists and bio control agents. Genet. Mol. Biol. 35:1044-1051. https://doi.org/10.1590/S1415-47572012000600020
  6. Berg, G. and Hallmann, J. 2006. Control of plant pathogenic fungi with bacterial endophytes. In: Microbial root endophytes, pp. 53-69. Springer Berlin Heidelberg.
  7. Berg, G., Krechel, A., Ditz, M., Faupel, A., Sikora, R. A., Ulrich, A. and Hallmann, J. 2005. Endophytic and ectophytic potato-associated bacterial communities differ in structure and antagonistic function against plant pathogenic fungi. FEMS Microbiol. Ecol. 51:215-229. https://doi.org/10.1016/j.femsec.2004.08.006
  8. Broekaert, W. F., Terras, F. R., Cammue, B. P. and Vanderleyden, J. 1990. An automated quantitative assay for fungal growth inhibition. FEMS Microbiol. Lett. 69:55-59. https://doi.org/10.1111/j.1574-6968.1990.tb04174.x
  9. Cao, L., Qiu, Z., You, J., Tan, H. and Zhou, S. 2005. Isolation and characterization of endophytic streptomycete antagonists of Fusarium wilt pathogen from surface-sterilized banana roots. FEMS Microbiol. Lett. 247:147-152. https://doi.org/10.1016/j.femsle.2005.05.006
  10. Cappuccino, J. C. and Sherman, N. 1992. Microbiology: a Laboratory Manual. 3rd ed. pp. 125-179. Benjamin/Cummings Pub. Co., NY, USA.
  11. Chang, W. T., Chen, Y. C. and Jao, C. L. 2007. Antifungal activity and enhancement of plant growth by Bacillus cereus grown on shellfsh chitin wastes. Bioresour. Technol. 98:1224-1230. https://doi.org/10.1016/j.biortech.2006.05.005
  12. Chauhan, A. K., Maheshwari, D. K., Kim, K. and Bajpai, V. K. 2016. Termitarium-inhabiting Bacillus endophyticus TSH42 and Bacillus cereus TSH77 colonizing Curcuma longa L.: isolation, characterization, and evaluation of their biocontrol and plant-growth-promoting activities. Can. J. Microbiol. 62:880-892. https://doi.org/10.1139/cjm-2016-0249
  13. Chernin, L. and Chet, I. 2002. Microbial enzymes in biocontrol of plant pathogens and pests. In: Enzymes in the environment: activity, ecology, and applications, pp. 171-225. Marcel Dekker, NY, USA.
  14. Compant, S., Duffy, B., Nowak, J., Clement, C. and Barka, E. A. 2005. Use of plant growth-promoting bacteria for biocontrol of plant diseases: principles, mechanisms of action, and future prospects. Appl. Environ. Microbiol. 71:4951-4959. https://doi.org/10.1128/AEM.71.9.4951-4959.2005
  15. Dinesh, R., Anandaraj, M., Kumar, A., Bini, Y. K., Subila, K. P. and Aravind, R. 2015. Isolation, characterization, and evaluation of multi-trait plant growth promoting rhizobacteria for their growth promoting and disease suppressing effects on ginger. Microbiol. Res. 173:34-43. https://doi.org/10.1016/j.micres.2015.01.014
  16. Egamberdiyeva, D. 2007. The effect of plant growth promoting bacteria on growth and nutrient uptake of maize in two different soils. Appl. Soil Ecol. 36:184-189. https://doi.org/10.1016/j.apsoil.2007.02.005
  17. El-Tarabily, K. A., Nassar, A. H., Hardy, G. S. J. and Sivasithamparam, K. 2009. Plant growth promotion and biological control of Pythium aphanidermatum, a pathogen of cucumber, by endophytic actinomycetes. J. Appl. Microbiol. 106:13-26. https://doi.org/10.1111/j.1365-2672.2008.03926.x
  18. Forchetti, G., Masciarelli, O., Alemano, S., Alvarez, D. and Abdala, G. 2007. Endophytic bacteria in sunfower (Helianthus annuus L.): isolation, characterization, and production of jasmonates and abscisic acid in culture medium. Appl. Microbiol. Biotechnol. 76:1145-1152. https://doi.org/10.1007/s00253-007-1077-7
  19. Glick, B. R. 1995. The enhancement of plant growth by free living bacteria. Can. J. Microbiol. 41:109-114. https://doi.org/10.1139/m95-015
  20. Gordon, S. A. and Weber, R. P. 1951. Colorimetric estimation of indoleacetic acid. Plant Physiol. 26:192-195. https://doi.org/10.1104/pp.26.1.192
  21. Hallmann, J., Davies, K. G. and Sikora, R. 2009. Biological control using microbial pathogens, endophytes and antagonists. In: Root-Knot Nematodes, pp. 380-411. CABI, Wallingford, UK.
  22. Hansen, M., Kragelund, L., Nybroe, O. and Sorensen, J. 1997. Early colonization of barley roots by Pseudomonas fuorescens studied by immunofuorescence technique and confocal laser scanning microscopy. FEMS Microbiol. Ecol. 23:353-360. https://doi.org/10.1111/j.1574-6941.1997.tb00416.x
  23. Holt, J. G., Krieg, N. R. and Sneath, P. H. A. 1994. Berger's manual of determinative bacteriology. 9th ed. Williams & Wilkins, Baltimore, MD, USA.
  24. IRRI. 2002. Standard Evaluation system for rice. International Rice Research Institute, Manila, Philippines. p.19.
  25. Jasim, B., Joseph, A. A., John, C. J., Mathew, J. and Radhakrishnan, E. K. 2014. Isolation and characterization of plant growth promoting endophytic bacteria from the rhizome of Zingiber offcinale. 3 Biotech 4:197-204.
  26. Jimtha, J. C., Jishma, P., Arathy, G. B., Anisha, C. and Rad-hakrishnan, E. K. 2016. Identification of plant growth promoting Rhizosphere Bacillus sp. WG4 antagonistic to Pythium myriotylum and its enhanced antifungal effect in association with Trichoderma. J. Soil Sci. Plant Nutr. 16:578-590.
  27. Kavitha, K., Nakkeeran, S. and Chandrasekar, G. 2012. Rhizobacterial-mediated induction of defense enzymes to enhance the resistance of turmeric (Curcuma longa L) to Pythium aphanidermatum causing rhizome rot. Arch. Phytopathology Plant Protect. 45:199-219. https://doi.org/10.1080/03235408.2010.526775
  28. Kloeppe, J. W., Rodriguez-Kabana, R., Zehnder, A. W., Murphy, J. F., Sikora, E. and Fernandez, C. 1999. Plant root-bacterial interactions in biological control of soil borne diseases and potential extension to systemic and foliar diseases. Australas. Plant Pathol. 28:21-26. https://doi.org/10.1071/AP99003
  29. Kloepper, J. W., Lifshitz, R. and Zablotowicz, R. M. 1989. Free-living bacterial inocula for enhancing crop productivity. Trends Biotechnol. 7:39-44. https://doi.org/10.1016/0167-7799(89)90057-7
  30. Kuffner, M., Puschenreiter, M., Wieshammer, G., Gorfer, M. and Sessitsch, A. 2008. Rhizosphere bacteria affect growth and metal uptake of heavy metal accumulating willows. Plant Soil 304:35-44. https://doi.org/10.1007/s11104-007-9517-9
  31. Kumar, A., Singh, R., Yadav, A., Giri, D. D., Singh, P. K. and Pandey, K. D. 2016. Isolation and characterization of bacterial endophytes of Curcuma longa L. 3 Biotech 6:1-8.
  32. Li, H., Wang, X., Han, M., Zhao, Z., Wang, M., Tang, Q., Liu, C., Kemp, B., Gu, Y., Shuang, J. and Xue, Y. 2012. Endophytic Bacillus subtilis ZZ120 and its potential application in control of replant diseases. Afr. J. Biotechnol. 11:231-242.
  33. Lodewyckx, C., Vangronsveld, J., Porteous, F., Moore, E. R., Taghavi, S., Mezgeay, M. and der Lelie, D. V. 2002. Endophytic bacteria and their potential applications. CRC Crit. Rev. Plant Sci. 21:583-606. https://doi.org/10.1080/0735-260291044377
  34. Loper, J. E. and Schroth, M. N. 1986. Influence of bacterial sources of indole-3-acetic acid on root elongation of sugar beet. Phytopathology 76:386-389. https://doi.org/10.1094/Phyto-76-386
  35. Lorck, H. 1948. Production of hydrocyanic acid by bacteria. Physiol. Plant. 1:142-146. https://doi.org/10.1111/j.1399-3054.1948.tb07118.x
  36. Martins, S. J., de Medeiros, F. H. V., de Souza, R. M., de Resende, M. L. V. and Ribeiro, P. M. 2013. Biological control of bacterial wilt of common bean by plant growth-promoting rhizobacteria. Biol. Control 66:65-71. https://doi.org/10.1016/j.biocontrol.2013.03.009
  37. Matthijs, S., Tehrani, K. A., Laus, G., Jackson, R. W., Cooper, R. M. and Cornelis, P. 2007. Thioquinolobactin, a Pseudomonas siderophore with antifungal and anti-Pythium activity. Environ. Microbiol. 9:425-434. https://doi.org/10.1111/j.1462-2920.2006.01154.x
  38. Minaxi and Saxena, J. 2010. Characterization of Pseudomonas aeruginosa RM-3 as a potential biocontrol agent. Mycopathologia 170:181-193. https://doi.org/10.1007/s11046-010-9307-4
  39. Muthukumar, A., Eswaran, A. and Sangeetha, G. 2011. Induction of systemic resistance by mixtures of fungal and endophytic bacterial isolates against Pythium aphanidermatum. Acta Physiol. Plant. 33:1933-1944. https://doi.org/10.1007/s11738-011-0742-8
  40. Nagrajkumar, M., Bhaskaran, R. and Velazhahan, R. 2004. Involvement of secondary metabolites and extracellular lytic enzymes produced by Pseudomonas fuorescens in inhibition of Rhizoctonia solani, the rice sheath of blight pathogen. Microbiol. Res. 159:73-81. https://doi.org/10.1016/j.micres.2004.01.005
  41. Pandey, A., Trivedi, P., Kumar, B. and Palni, L. M. S. 2006. Characterization of a phosphate solubilizing and antagonistic strain of Pseudomonas putida (B0) isolated from a sub-alpine location in the Indian Central Himalaya. Curr. Microbiol. 53:102-107. https://doi.org/10.1007/s00284-006-4590-5
  42. Park, M. 1934. Report on the work of the mycology division. In: Administrative report of directorate of agriculture, pp. 126-133. Ceylon.
  43. Pikovskaya, R. I. 1948. Mobilization of phosphorus in soil in connection with vital activity of some microbial species. Mikrobiologiya 17:362-370.
  44. Pillay, V. K. and Nowak, J. 1997. Inoculum density, temperature, and genotype effects on in vitro growth promotion and epiphytic and endophytic colonization of tomato (Lycopersicon esculentum L.) seedlings inoculated with a pseudomonad bacterium. Can. J. Microbiol. 43:354-361. https://doi.org/10.1139/m97-049
  45. Pleban, S., Chernin, L. and Chet, I. 1997. Chitinolytic activity of an endophytic strain of Bacillus cereus. Lett. App. Microbiol. 25:284-288. https://doi.org/10.1046/j.1472-765X.1997.00224.x
  46. Rajendran, L. and Samiyappan, R. 2008. Endophytic Bacillus species confer increased resistance in cotton against damping off disease caused by Rhizoctonia solani. Plant Pathol. J. 7:1-12. https://doi.org/10.3923/ppj.2008.1.12
  47. Ramarethinam, S. and Rajagopal, B. 1999. Efficacy of Trichoderma sp. organic amendments and seed dressing fungicides on rhizome rot of turmeric. Pestology 23:21-22.
  48. Rana, A., Saharan, B., Joshi, M., Prasanna, R., Kumar, K. and Nain, L. 2011. Identifcation of multi-trait PGPR isolates and evaluating their potential as inoculants for wheat. Ann. Microbiol. 61:893-900. https://doi.org/10.1007/s13213-011-0211-z
  49. Rathaiah, Y. 1982. Ridomil for control of rhizome rot of turmeric. Indian Phytopathol. 35:297-299.
  50. Roy, A. K. 1992. Severity of Rhizoctonia solani on the leaves of rice and turmeric. Indian Phytopathol. 45:344-347.
  51. Minaxi and Saxena, J. 2010. Characterization of Pseudomonas aeruginosa RM-3 as a potential biocontrol agent. Mycopathologia 170:181-193. https://doi.org/10.1007/s11046-010-9307-4
  52. Schulz, B. J. E., Boyle, C. J. C. and Sieber, T. N. 2006. Microbial root endophytes, pp. 1-13. Springer-Verlag, Berlin.
  53. Schwyn, B. and Neilands, J. B. 1987. Universal chemical assay for the detection and determination of siderophores. Anal. Biochem. 160:47-56. https://doi.org/10.1016/0003-2697(87)90612-9
  54. Shanmugam, V., Gupta, A. K., Kanoujia, S. and Naruka, N. D. S. 2011. Selection and differentiation of Bacillus spp. Antagonistic to Fusarium oxysporum f.sp. lycopersici and Alternaria solani infecting tomato. Folia Microbiol. (Praha) 56:170-177. https://doi.org/10.1007/s12223-011-0031-3
  55. Shanmugam, V., Gupta, S. and Dohroo, N. P. 2013. Selection of a compatible biocontrol strain mixture based on co-cultivation to control rhizome rot of ginger. Crop Prot. 43:119-127. https://doi.org/10.1016/j.cropro.2012.08.012
  56. Siddiqui, Z. A. 2005. PGPR: prospective biocontrol agents of plant pathogens. In PGPR: biocontrol and biofertilization, pp. 111-142. Springer, Netherlands.
  57. Someya, T. 1995. Three-dimensional observation of soil bacteria in organic debris with a confocal laser scanning microscope. Soil Microorganisms 46:61-69.
  58. Sriraj, P. P., Sundravadana, S. and Alice, D. 2014. Efficacy of fungicides, botanicals and bioagents against Rhizoctonia solani inciting leaf blight on turmeric (Curcuma longa L.). Afr. J. Microbiol. Res. 8:3284-3294. https://doi.org/10.5897/AJMR2013.6315
  59. Sturz, A. V., Christie, B. R. and Nowak, J. 2000. Bacterial endophytes: potential role in developing sustainable systems of crop production. CRC Crit. Rev. Plant Sci. 19:1-30. https://doi.org/10.1080/07352680091139169
  60. Tamura, K., Peterson, D., Peterson, N., Stecher, G., Nei, M. and Kumar, S. 2011. MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Mol. Biol. Evol. 28:2731-2739. https://doi.org/10.1093/molbev/msr121
  61. Thiripurasundari, K. and Selvarani, K. 2014. Production of turmeric in India: an analysis. Int. J. Bus. Manag. 2:229.
  62. Thompson, J. D., Higgins, D. G. and Gibson, T. J. 1994. CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specifc gap penalties and weight matrix choice. Nucleic Acids Res. 22:4673-4680. https://doi.org/10.1093/nar/22.22.4673
  63. Valois, D., Fayad, K., Barasubiye, T., Garon, M., Dery, C., Brzezinski, R. and Beaulieu, C. 1996. Glucanolytic actinomycetes antagonistic to Phytophthora fragariae var. rubi, the causal agent of raspberry root rot. Appl. Environ. Microbiol. 62:1630-1635.
  64. Verma, S. C., Ladha, J. K. and Tripathi, A. K. 2001. Evaluation of plant growth promoting and colonization ability of endophytic diazotrophs from deep water rice. J. Biotechnol. 91:127-141. https://doi.org/10.1016/S0168-1656(01)00333-9
  65. Wakelin, S. A., Warren, R. A., Harvey, P. R. and Ryder, M. H. 2004. Phosphate solubilization by Penicillium spp. closely associated with wheat roots. Biol. Fert. Soils 40:36-43. https://doi.org/10.1007/s00374-004-0750-6
  66. Wang, X., Wang, L., Wang, J., Jin, P., Liu, H. and Zheng, Y. 2014. Bacillus cereus AR156-induced resistance to Colletotrichum acutatum is associated with priming of defense responses in loquat fruit. PLoS One 9:e112494. https://doi.org/10.1371/journal.pone.0112494
  67. Waqas, M., Khan, A. L., Kamran, M., Hamayun, M., Kang, S. M., Kim, Y. H. and Lee, I. J. 2012. Endophytic fungi produce gibberellins and indoleacetic acid and promotes host-plant growth during stress. Molecules 17:10754-10773. https://doi.org/10.3390/molecules170910754
  68. Weller, D. M. 1988. Biological control of soil borne plant pathogens in the rhizosphere with bacteria. Annu. Rev. Phytopathol. 26:379-407. https://doi.org/10.1146/annurev.py.26.090188.002115
  69. Yuan, J., Raza, W., Shen, Q. and Huang, Q. 2012. Antifungal activity of Bacillus amyloliquefaciens NJN-6 volatile compounds against Fusarium oxysporum f. sp. cubense. Appl. Environ. Microbiol. 78:5942-5944. https://doi.org/10.1128/AEM.01357-12