DOI QR코드

DOI QR Code

Diagnosis and Integrated Management of Fruit Rot in Cucurbita argyrosperma, Caused by Sclerotium rolfsii

  • Received : 2017.08.27
  • Accepted : 2018.02.19
  • Published : 2018.06.01

Abstract

Fruit rot is the principal phytopathological problem of pipiana pumpkin (Cucurbita argyrosperma Huber) in the state of Guerrero. The aims of this research were to 1) identify the causal agent of southern blight on pumpkin fruits by morphological, pathogenic, and molecular analysis (ITS1, 5.8S, ITS2); 2) evaluate in vitro Trichoderma spp. strains and chemical fungicides; and 3) evaluate under rainfed field conditions, the strains that obtained the best results in vitro, combined with fungicides during two crop cycles. Number of commercial and non-commercial fruits at harvest, and seed yield ($kg\;ha^{-1}$) were registered. Morphological, pathogenic and molecular characterization identified Sclerotium rolfsii as the causal agent of rot in pipiana pumpkin fruits. Now, in vitro conditions, the highest inhibition of S. rolfsii were obtained by Trichoderma virens strain G-41 (70.72%), T. asperellum strain CSAEGro-1 (69%), and the fungicides metalaxyl (100%), pyraclostrobin (100%), quintozene (100%), cyprodinil + fludioxonil (100%), and prochloraz (100%). Thiophanate-methyl only delayed growth (4.17%). In field conditions, during the spring-summer 2015 cycle, T. asperellum strain CSAEGro-1 + metalaxyl, and T. asperellum + cyprodinil + fludioxonil, favored the highest number of fruits and seed yield in the crop.

Keywords

References

  1. Akgul, D. S., Ozgonen, H. and Erkilic, A. 2011. The effects of seed treatments with fungicides on stem rot caused by Sclerotium rolfsii Sacc., in peanut. Pak. J. Bot. 43:2991-2996.
  2. Alvarado-Marchena, L. and Rivera-Mendez, W. 2016. Molecular identifcation of Trichoderma spp. in garlic and onion felds and in vitro antagonism trials on Sclerotium cepivorum. Rev. Bras. Cienc. Solo. 40:e0150454.
  3. Amule, R., Gupta, O. and Mishra, M. 2014. Techniques for screening of chickpea genotypes against collar rot, its management through host plant resistance and fungicides. Legume Res. 37:110-114. https://doi.org/10.5958/j.0976-0571.37.1.017
  4. Ayala, A. Q. A., Cortez, M. E., Apodaca, S. M. A., Leal, L. V. M., Valenzuela, E. F. A. and Palacios, M. C. A. 2015. Bio-rational and conventional fungicides effectiveness on in vitro Sclerotinia sclerotiorum. Mexican Journal of Agricultural Sciences 11:2149-2156.
  5. Ayvar, S. S., Mena, B. A., Duran, R. J. A., Cruzaley, S. R. and Gomez, M. N. O. 2007. The pipiana pumpkin and its integrated management. Technical brochure. Fundacion Produce de Guerrero, A. C. Campo Experimental Iguala. CSAEGro. Iguala, Gro. Mexico. 26 pp.
  6. Diaz, N. J. F., Alvarado, G. O. G., Leyva, M. S. G., Ayvar, S. S., Michel, A. A. C. and Vargas, H. M. 2015. Identifcation and control of fungi causing fruits rot in pipiana pumpkin (Cucurbita argyrosperma Huber). Afr. J. Agric. Res. 10:1150-1157.
  7. Diaz, N. J. F., Vargas, H. M., Ayvar, S. S., Alvarado, G. O. G., Solis, A. J. F., Duran, R. J. A., Diaz, C. H. L. and Hernandez, A. A. 2014. Morphological and PCR identifcation of Rhizoctonia solani KUHN isolated from pipiana pumpkin fruits and greenhouse management. Biotecnia 16:17-21. https://doi.org/10.18633/bt.v16i3.107
  8. Felsenstein, J. 1985. Confidence limits of phylogenies: an approach using the bootstrap. Evolution 39:783-791. https://doi.org/10.1111/j.1558-5646.1985.tb00420.x
  9. Fishel, F. M. and Dewdney, M. M. 2012. Fungicide Resistance Action Committees (FRAC) Classification scheme of fungicidees according to mode of action. PI94. University of Florida. 7 pp.
  10. Garcia, V. R., Gonzalez, D. J. G., Dominguez, A. G., Ayala, E. V. and Aguilar, M. S. 2012. Rosellinia necatrix in Rosa sp. and an evaluation of its sensitivity to fungicides. Rev. Chapingo Ser. Hortic 18:39-54.
  11. Hall, T. 2004. BioEdit version 7.0.0. Isis Pharmaceuticals Inc. 192 pp. URL http://www.mbio.ncsu.edu/BioEdit/biodoc.pdf/.
  12. Hirpara, D. G., Gajera, H. P., Hirpara, H. Z. and Golakiya, B. A. 2017. Antipathy of Trichoderma against Sclerotium rolfsii Sacc.: evaluation of cell wall-degrading enzymatic activities and molecular diversity analysis of antagonists. J. Mol. Microbiol. Biotechnol. 27:22-28. https://doi.org/10.1159/000452997
  13. Infante, D., Gonzalez, N., Reyes, Y. and Martinez, B. 2011. Evaluation of the effectiveness of twelve strains of Trichoderma asperellum Samuels on three phytopathogens in feld conditions. Journal Plant Protection 26:194-197.
  14. Islam, M. M., Delwar, M., Hossain, M. N. and Naoki, H. 2016. Biological control of tomato collar rot induced by Sclerotium rolfsii using Trichoderma species isolated in Bangladesh. Arch. Phytopathology Plant Protect. 50:109-116.
  15. John, N. S., Anjanadevi, I. P., Nath, V. S., Sankar, S. A., Jeeva, M. L., John, K. S. and Misra, R. S. 2015. Characterization of Trichoderma isolates against Sclerotium rolfsii, the collar rot pathogen of Amorphophallus - a polyphasic approach. Biol. Control 90:164-172. https://doi.org/10.1016/j.biocontrol.2015.07.001
  16. Khan, I. H. and Javaid, A. 2015. Chemical control of collar rot disease of chickpea. Pak. J. Phytopathol. 27:61-68.
  17. Kumar, S., Stecher, G. and Tamura, K. 2016. MEGA7: molecular evolutionary genetics analysis version 7.0 for bigger datasets. Mol. Biol. Evol. 33:1870-1874. https://doi.org/10.1093/molbev/msw054
  18. Latin, R. 2011. Practical guide to turfgrass fungicides. APS Press, MN, USA. 270 pp.
  19. Liang, H. J., Di, Y. L., Li, J. L., You, H. and Zhu, F. X. 2015. Baseline sensitivity of pyraclostrobin and toxicity of SHAM to Sclerotinia sclerotiorum. Plant Dis. 99:267-273. https://doi.org/10.1094/PDIS-06-14-0633-RE
  20. Mahato, A., Mondal, B., Dhakre, D. S. and Khatua, D. C. 2014. In vitro sensitivity of Sclerotium rolfsii towards some fungicides and botanicals. Scholars Acad. J. Biosci. 2:467-471.
  21. Manu, T. G., Nagaraja, A., Janawad, C. S. and Hosamani, V. 2012. Efficacy of fungicides and biocontrol agents against Sclerotium rolfsii causing foot rot disease of fnger millet, under in vitro conditions. GJBAHS 1:46-50.
  22. Mouden, N., Chliyeh, M., Benkirane, R., Ouazzani, A. T. and Douira, A. 2016. Chemical control of some strawberries fungal pathogens by foliar fungicides under in vitro and in vivo conditions. Int. J. Recent Sci. Res. 7:9037-9051.
  23. Mueller, D. S. and Bradley, C. A. 2008. Field crop fungicides for the North Central United States. North Central Integrated Pest Management Center. 29 pp.
  24. Parmar, H. J., Bodar, N. P., Lakhani, H. N., Patel, S. V., Umrania, V. V. and Hassan, M. M. 2015. Production of lytic enzymes by Trichoderma strains during in vitro antagonism with Sclerotium rolfsii, the causal agent of stem rot of groundnut. Afr. J. Microbiol. Res. 9:365-372. https://doi.org/10.5897/AJMR2014.7330
  25. Patil, N. N., Waghmo de M. S., Gaikwad, P. S., Gajbhiye, M. H., Gunjal, A. B., Nawani, N. and Kapadnis, B. P. 2014. Potential of Microbispora sp. V2 as biocontrol agent against Sclerotium rolfsii, the causative agent of southern blight of Zea mays L. (Baby corn)--in vitro studies. Indian J. Exp. Biol. 52:1147-1151.
  26. Perez, M. L., Belmonte, V. J. R., Nunez, Palenius, H. G., Guzman, M. R. and Mendoza, C. B. 2015. In vitro sensitivity of two species of Sclerotinia spp. and Sclerotium cepivorum to agents of biological control and fungicides. Mexican Journal of Phytopathology 33:256-267.
  27. Rather, T. R., Razdan, V. K., Tewari, A. K., Shanaz, E., Bhat, Z. A., Hassan, M. G. and Wani, T. A. 2012. Integrated management of wilt complex disease in bell pepper (Capsicum annuum L.) J. Agric. Sci. 4:141-147.
  28. Shoresh, M. and Harman, G. E. 2008. The molecular basis of shoot responses of maize seedlings to Trichoderma harzianum T22 inoculation of the root: a proteomic approach. Plant Physiol. 147:2147-2163. https://doi.org/10.1104/pp.108.123810
  29. Sohbat, B., Reza, A. and Saeed, A. 2015. Anti-fungal properties of 43 plant species against Alternaria solani and Botrytis cinerea. Arch. Phytopathology Plant Protect. 48:336-344. https://doi.org/10.1080/03235408.2014.888236
  30. Statistical Analysis System. 2015. SAS user's guide: statistics. Release 6.03. SAS Institute in corporation, Cary, NC, USA.
  31. Suryawanshi, A. P., Borgaonkar, A. S., Kuldhar, D. P. and Dey, U. 2015. Integrated management of collar rot (Sclerotium rolfsii) of brinjal (Solanum melongena). Indian Phytopath. 68:189-195.
  32. Thompson, J. D., Higgins, D. G. and Gibson, T. J. 1994. CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specifc gap penalties and weight matrix choice. Nucleic Acids Res. 22:4673-4680. https://doi.org/10.1093/nar/22.22.4673
  33. Watanabe, T. 2002. Pictorial atlas of soil and seed fungi. Morphologies of cultured fungi and key to species. 2nd ed. CRC Press, Washington DC, USA. 500 pp.
  34. White, T. J., Bruns, T., Lee, S. and Taylor, J. 1990. Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenies. In: PCR protocols, eds. by M. A. Inns, D. H. Gelfand, J. J. Sninsky and T. J. White, pp. 315-322. Academic Press, CA, USA.
  35. Zitter, T. A., Hopkins, D. L. and Thomas, C. E. 2004. Pests and diseases of cucurbits. The American Phytopathological Society, Ediciones Mundi Prensa. 88 pp.