DOI QR코드

DOI QR Code

Disinfection by Ozone Microbubbles Can Cause Morphological Change of Fusarium oxysporum f. sp. melonis Spores

  • 투고 : 2017.11.12
  • 심사 : 2018.04.23
  • 발행 : 2018.08.01

초록

To investigate the difference in the disinfectant efficiency of ozone microbubbles ($O_3MB$) and ozone millibubbles ($O_3MMB$), the morphological change of the treated Fusarium oxysporum f. sp. melonis spores was observed with scanning and transmission electron microscopies (SEM and TEM). The disinfectant efficiency of $O_3MB$ on F. oxysporum f. sp. melonis spores was greater than that of $O_3MMB$. On observation with SEM, it was revealed that morphological change of F. oxysporum f. sp. melonis spores was caused by $O_3MB$ and $O_3MMB$, and damage to the spore surfaces by $O_3MB$ occurred sooner than that by $O_3MMB$. On observation with TEM, it was furthermore confirmed that F. oxysporum f. sp. melonis spores treated with $O_3MB$ induced wavy deformation of cell membrane and the intracellular change different from that with $O_3MMB$. Therefore, the greater disinfection efficiency of $O_3MB$ was suggested to be caused due to the function of the MB in addition to the oxidative power of $O_3$.

키워드

참고문헌

  1. Bando, K., Kawano, M., Kuroda, Y., Kusakari, S., Yamasaki, M., Maeda, T. and Kourai, H. 2008. Effect of silver-supported photocatalytic sterilization, yield, quality, and nutrient element concentrations in the tomato grown under rockwool culture. Hortic. Res. (Japan) 7:309-315 (in Japanese). https://doi.org/10.2503/hrj.7.309
  2. Cho, M., Chung, H. and Yoon, J. 2003. Disinfection of water containing natural organic matter by using ozone-initiated radical reactions. Appl. Environ. Microbiol. 69:2284-2291. https://doi.org/10.1128/AEM.69.4.2284-2291.2003
  3. Cho, M., Kim, J., Kim, J. Y., Yoon, J. and Kim, J. H. 2010. Mechanisms of Escherichia coli inactivation by several disinfectants. Water Res. 44:3410-3418. https://doi.org/10.1016/j.watres.2010.03.017
  4. Chu, L. B., Xing, X. H., Yu, A. F., Sun, X. L. and Jurcik, B. 2008. Enhanced treatment of practical textile wastewater by microbubble ozonation. Process Saf. Environ. Prot. 86:389-393. https://doi.org/10.1016/j.psep.2008.02.005
  5. Chuajedton, A., Nuanaon, N., Uthaibutra, J. and Whangchai, K. 2015. Ozone microbubbles disinfection technique to inactivate penicillium digitatum in suspension. Acta Hortic. 1088:355-358.
  6. Dannehl, D., Schuch, I., Gao, Y., Cordiner, S. and Schmidt, U. 2016. Effects of hypochlorite as a disinfectant for hydroponic systems on accumulations of chlorate and phytochemical compounds in tomatoes. Eur. Food Res. Technol. 242:345-353. https://doi.org/10.1007/s00217-015-2544-5
  7. Diao, H. F., Li, X. Y., Gu, J. D., Shi, H. C. and Xie, Z. M. 2004. Electron microscopic investigation of the bactericidal action of electrochemical disinfection in comparison with chlorination, ozonation and Fentone reaction. Process Biochem. 39:1421-1426. https://doi.org/10.1016/S0032-9592(03)00274-7
  8. Ehret, D. L., Alsanius, B., Wohanka, W., Menzies, J. G. and Utkhede, R. 2001. Disinfestation of recirculating nutrient solutions in greenhouse horticulture. Agronomie 21:323-339. https://doi.org/10.1051/agro:2001127
  9. Igura, N., Fujii, M., Shimoda, M. and Hayakawa, I. 2004. Inactivation effciency of ozonated water for Fusarium oxysporum conidia under hydroponic greenhouse conditions. Ozone Sci. Eng. 26:517-521. https://doi.org/10.1080/01919510490507937
  10. Inatsu, Y., Kitagawa, T., Nakamura, N., Kawasaki, S., Nei, D., Bari, L. and Kawamoto, S. 2011. Effectiveness of stable ozone microbubble water on reducing bacteria on the surface of selected leafy vegetables. Food Sci. Technol. Res. 17:479-485. https://doi.org/10.3136/fstr.17.479
  11. Kobayashi, F., Ikeura, H., Ohsato, H., Goto, T. and Tamaki, M. 2011a. Disinfection using ozone microbubbles to inactivate Fusarium oxysporum f. sp. melonis and Pectobacterium carotovorum subsp. carotovorum. Crop Prot. 30:1514-1518. https://doi.org/10.1016/j.cropro.2011.07.018
  12. Kobayashi, F., Ikeura, H., Ohsato, S. and Tamaki, M. 2011b. Microbicidal effect of microbubbles with ozone, oxygen, and carbon dioxide against Fusarium oxysporum f. sp. melonis and Pectobacterium carotovorum subsp. carotovorum. Journal of the Japanese Society of Agricultural Technology Management 18:123-128.
  13. Kobayashi, F., Ikeura, H., Ohsato, S. and Tamaki, M. 2011c. Microbicidal effect of ozone microbubbles generated by different methods on Fusarium oxysporum f. sp. melonis and Pectobacterium carotovorum subsp. carotovorum. Journal of the Japanese Society of Agricultural Technology Management 18:129-134.
  14. Kobayashi, F., Ikeura, H., Ohsato, S., Goto, T. and Tamaki, M. 2012. Ozone microbubbles as a disinfection in nutrient solution, and their effects on the composition of fertilizer and the growth of cultivated plants. Biol. Eng. Trans. 5:137-146. https://doi.org/10.13031/2013.42274
  15. Koohakan, P., Ikeda, H., Kusakari, S., Masuda, T., Mano, K. and Masuda, R. 2003. Effects of $TiO_2$ photocatalytic sterilizing system on the suppression of tomato root rot disease in the nutrient solution. Hortic. Res. (Japan) 2:215-219 (in Japanese). https://doi.org/10.2503/hrj.2.215
  16. Li, P. and Tsuge, H. 2006. Ozone transfer in a new gas-induced contactor with microbubbles. J. Chem. Eng. Jpn 39:1213-1220. https://doi.org/10.1252/jcej.39.1213
  17. Li, P., Takahashi, M. and Chiba, K. 2009. Degradation of phenol by the collapse of microbubbles. Chemosphere 75:1371-1375. https://doi.org/10.1016/j.chemosphere.2009.03.031
  18. Ministry of Agriculture, Forestry and Fisheries. 2010. Agricultural Chemicals Regulation Act. URL http://www.maff.go.jp/j/nouyaku/n_kaisei/zenbun.html/.
  19. Ohtani, T., Kaneko, A., Fukuda, N., Hagiwara, S. and Sase, S. 2000. Development of a membrane disinfection system for closed hydroponics in a greenhouse. J. Agric. Eng. Res. 77:227-232. https://doi.org/10.1006/jaer.2000.0589
  20. Runia, W. T. 1995. A review of possibilities for disinfection of recirculation water from soilless cultures. Acta Hortic. 382:221-229.
  21. Takahashi, M. 2005. ${\zeta}$ potential of microbubbles in aqueous solutions: electrical properties of the gas-water interface. J. Phys. Chem. B 109:21858-21864. https://doi.org/10.1021/jp0445270
  22. Takahashi, M., Kawamura, T., Yamamoto, Y., Ohnari, H., Himuro, S. and Shakutsui, H. 2003. Effect of shrinking microbubble on gas hydrate formation. J. Phys. Chem. B 107:2171-2173. https://doi.org/10.1021/jp022210z
  23. Thanomsub, B., Anupunpisit, V., Chanphetch, S., Watcharachaipong, T., Poonkhum, R. and Srisukonth, C. 2002. Effects of ozone treatment on cell growth and ultrastructural changes in bacteria. J. Gen. Appl. Microbiol. 48:193-199. https://doi.org/10.2323/jgam.48.193
  24. Tsuge, H., Li, P., Shimatani, N., Shimamura, Y., Nakata, H. and Ohira, M. 2009. Fundamental study on disinfection effect of microbubbles. Kagaku Kogaku Ronbunshu 35:548-552 (in Japanese). https://doi.org/10.1252/kakoronbunshu.35.548
  25. Zhang, Y. Q., Wu, Q. P., Zhang, J. M. and Yang, X. H. 2011. Effect of ozone on membrane permeability and ultrastructure in Pseudomonas aeruginosa. J. Appl. Microbiol. 111:1006-1015. https://doi.org/10.1111/j.1365-2672.2011.05113.x
  26. Zheng, T., Wang, Q., Zhang, T., Shi, Z., Tian, Y., Shi, S., Smale, N. and Wang, J. 2015. Microbubble enhanced ozonation process for advanced treatment of wastewater produced in acrylic fber manufacturing industry. J. Hazard. Mater. 287:412-420. https://doi.org/10.1016/j.jhazmat.2015.01.069