참고문헌
- Bando, K., Kawano, M., Kuroda, Y., Kusakari, S., Yamasaki, M., Maeda, T. and Kourai, H. 2008. Effect of silver-supported photocatalytic sterilization, yield, quality, and nutrient element concentrations in the tomato grown under rockwool culture. Hortic. Res. (Japan) 7:309-315 (in Japanese). https://doi.org/10.2503/hrj.7.309
- Cho, M., Chung, H. and Yoon, J. 2003. Disinfection of water containing natural organic matter by using ozone-initiated radical reactions. Appl. Environ. Microbiol. 69:2284-2291. https://doi.org/10.1128/AEM.69.4.2284-2291.2003
- Cho, M., Kim, J., Kim, J. Y., Yoon, J. and Kim, J. H. 2010. Mechanisms of Escherichia coli inactivation by several disinfectants. Water Res. 44:3410-3418. https://doi.org/10.1016/j.watres.2010.03.017
- Chu, L. B., Xing, X. H., Yu, A. F., Sun, X. L. and Jurcik, B. 2008. Enhanced treatment of practical textile wastewater by microbubble ozonation. Process Saf. Environ. Prot. 86:389-393. https://doi.org/10.1016/j.psep.2008.02.005
- Chuajedton, A., Nuanaon, N., Uthaibutra, J. and Whangchai, K. 2015. Ozone microbubbles disinfection technique to inactivate penicillium digitatum in suspension. Acta Hortic. 1088:355-358.
- Dannehl, D., Schuch, I., Gao, Y., Cordiner, S. and Schmidt, U. 2016. Effects of hypochlorite as a disinfectant for hydroponic systems on accumulations of chlorate and phytochemical compounds in tomatoes. Eur. Food Res. Technol. 242:345-353. https://doi.org/10.1007/s00217-015-2544-5
- Diao, H. F., Li, X. Y., Gu, J. D., Shi, H. C. and Xie, Z. M. 2004. Electron microscopic investigation of the bactericidal action of electrochemical disinfection in comparison with chlorination, ozonation and Fentone reaction. Process Biochem. 39:1421-1426. https://doi.org/10.1016/S0032-9592(03)00274-7
- Ehret, D. L., Alsanius, B., Wohanka, W., Menzies, J. G. and Utkhede, R. 2001. Disinfestation of recirculating nutrient solutions in greenhouse horticulture. Agronomie 21:323-339. https://doi.org/10.1051/agro:2001127
- Igura, N., Fujii, M., Shimoda, M. and Hayakawa, I. 2004. Inactivation effciency of ozonated water for Fusarium oxysporum conidia under hydroponic greenhouse conditions. Ozone Sci. Eng. 26:517-521. https://doi.org/10.1080/01919510490507937
- Inatsu, Y., Kitagawa, T., Nakamura, N., Kawasaki, S., Nei, D., Bari, L. and Kawamoto, S. 2011. Effectiveness of stable ozone microbubble water on reducing bacteria on the surface of selected leafy vegetables. Food Sci. Technol. Res. 17:479-485. https://doi.org/10.3136/fstr.17.479
- Kobayashi, F., Ikeura, H., Ohsato, H., Goto, T. and Tamaki, M. 2011a. Disinfection using ozone microbubbles to inactivate Fusarium oxysporum f. sp. melonis and Pectobacterium carotovorum subsp. carotovorum. Crop Prot. 30:1514-1518. https://doi.org/10.1016/j.cropro.2011.07.018
- Kobayashi, F., Ikeura, H., Ohsato, S. and Tamaki, M. 2011b. Microbicidal effect of microbubbles with ozone, oxygen, and carbon dioxide against Fusarium oxysporum f. sp. melonis and Pectobacterium carotovorum subsp. carotovorum. Journal of the Japanese Society of Agricultural Technology Management 18:123-128.
- Kobayashi, F., Ikeura, H., Ohsato, S. and Tamaki, M. 2011c. Microbicidal effect of ozone microbubbles generated by different methods on Fusarium oxysporum f. sp. melonis and Pectobacterium carotovorum subsp. carotovorum. Journal of the Japanese Society of Agricultural Technology Management 18:129-134.
- Kobayashi, F., Ikeura, H., Ohsato, S., Goto, T. and Tamaki, M. 2012. Ozone microbubbles as a disinfection in nutrient solution, and their effects on the composition of fertilizer and the growth of cultivated plants. Biol. Eng. Trans. 5:137-146. https://doi.org/10.13031/2013.42274
-
Koohakan, P., Ikeda, H., Kusakari, S., Masuda, T., Mano, K. and Masuda, R. 2003. Effects of
$TiO_2$ photocatalytic sterilizing system on the suppression of tomato root rot disease in the nutrient solution. Hortic. Res. (Japan) 2:215-219 (in Japanese). https://doi.org/10.2503/hrj.2.215 - Li, P. and Tsuge, H. 2006. Ozone transfer in a new gas-induced contactor with microbubbles. J. Chem. Eng. Jpn 39:1213-1220. https://doi.org/10.1252/jcej.39.1213
- Li, P., Takahashi, M. and Chiba, K. 2009. Degradation of phenol by the collapse of microbubbles. Chemosphere 75:1371-1375. https://doi.org/10.1016/j.chemosphere.2009.03.031
- Ministry of Agriculture, Forestry and Fisheries. 2010. Agricultural Chemicals Regulation Act. URL http://www.maff.go.jp/j/nouyaku/n_kaisei/zenbun.html/.
- Ohtani, T., Kaneko, A., Fukuda, N., Hagiwara, S. and Sase, S. 2000. Development of a membrane disinfection system for closed hydroponics in a greenhouse. J. Agric. Eng. Res. 77:227-232. https://doi.org/10.1006/jaer.2000.0589
- Runia, W. T. 1995. A review of possibilities for disinfection of recirculation water from soilless cultures. Acta Hortic. 382:221-229.
-
Takahashi, M. 2005.
${\zeta}$ potential of microbubbles in aqueous solutions: electrical properties of the gas-water interface. J. Phys. Chem. B 109:21858-21864. https://doi.org/10.1021/jp0445270 - Takahashi, M., Kawamura, T., Yamamoto, Y., Ohnari, H., Himuro, S. and Shakutsui, H. 2003. Effect of shrinking microbubble on gas hydrate formation. J. Phys. Chem. B 107:2171-2173. https://doi.org/10.1021/jp022210z
- Thanomsub, B., Anupunpisit, V., Chanphetch, S., Watcharachaipong, T., Poonkhum, R. and Srisukonth, C. 2002. Effects of ozone treatment on cell growth and ultrastructural changes in bacteria. J. Gen. Appl. Microbiol. 48:193-199. https://doi.org/10.2323/jgam.48.193
- Tsuge, H., Li, P., Shimatani, N., Shimamura, Y., Nakata, H. and Ohira, M. 2009. Fundamental study on disinfection effect of microbubbles. Kagaku Kogaku Ronbunshu 35:548-552 (in Japanese). https://doi.org/10.1252/kakoronbunshu.35.548
- Zhang, Y. Q., Wu, Q. P., Zhang, J. M. and Yang, X. H. 2011. Effect of ozone on membrane permeability and ultrastructure in Pseudomonas aeruginosa. J. Appl. Microbiol. 111:1006-1015. https://doi.org/10.1111/j.1365-2672.2011.05113.x
- Zheng, T., Wang, Q., Zhang, T., Shi, Z., Tian, Y., Shi, S., Smale, N. and Wang, J. 2015. Microbubble enhanced ozonation process for advanced treatment of wastewater produced in acrylic fber manufacturing industry. J. Hazard. Mater. 287:412-420. https://doi.org/10.1016/j.jhazmat.2015.01.069