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Abstract
The one of the principles described in ICH E9 is that only results obtained from pre-specified statistical

methods in a protocol are regarded as confirmatory evidence. However, in multi-regional clinical trials, even
when results obtained from pre-specified statistical methods in protocol are significant, it does not guarantee
that the test treatment is approved by regional regulatory agencies. In other words, there is no so-called global
approval, and each regional regulatory agency makes its own decision in the face of the same set of data from
a multi-regional clinical trial. Under this situation, there are two natural methods a regional regulatory agency
can use to estimate the treatment effect in a particular region. The first method is to use the overall treatment
estimate, which is to extrapolate the overall result to the region of interest. The second method is to use regional
treatment estimate. If the treatment effect is completely identical across all regions, it is obvious that the overall
treatment estimator is more efficient than the regional treatment estimator. However, it is not possible to confirm
statistically that the treatment effect is completely identical in all regions. Furthermore, some magnitude of
regional differences within the range of clinical relevance may naturally exist for various reasons due to, for
instance, intrinsic and extrinsic factors. Nevertheless, if the magnitude of regional differences is relatively small,
a conventional method to estimate the treatment effect in the region of interest is to extrapolate the overall result
to that region. The purpose of this paper is to investigate the effects produced by this type of extrapolation via
estimations, followed by hypothesis testing of the treatment effect in the region of interest. This paper is written
from the viewpoint of regional regulatory agencies.
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1. Multi-regional clinical trials from the viewpoint of regional regulatory agencies

Currently, multi-regional clinical trials (MRCTs) play a major role in providing evidence of the ef-
ficacy and safety of new drugs. MRCTs are studies planned with the objective of the world-scale
development and approval of new drugs. In MRCTs, study sites at multiple countries and regions
participate in a single study based on a common protocol and the trials are conducted simultaneously
(ICH, 2006, 2017; MHLW, 2007). In the planning stages of a MRCT, an important premise is that
there can be no, or reasonably small, regional variation. This premise of MRCTs is usually supported
by biological and medical knowledge about the disease; the mechanism of action of the compound;
the medical practice characteristics in the individual regions (e.g., treatment guidelines and the avail-
ability of concomitant therapies); the health systems, and the available nonclinical, preclinical, and
early clinical data. Usually, a small difference in the magnitude of the treatment effect is acceptable.
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If a substantial regional variation is expected, a global development strategy using MRCTs may not
be appropriate (Chen et al., 2011).

After a MRCT is finished, there are two main objectives in a conventional analysis of the MRCT.
The primary is to demonstrate the efficacy of a drug in all participating regions. The second is, after
the overall effect is shown, to evaluate the possibility of applying the overall trial results to each
region by checking the consistency of the treatment effect across regions. Hence, an assessment of
the consistency of the treatment effect across regions is a key issue in relation to MRCTs (Chen et al.,
2010; Liu et al., 2013; Quan et al., 2010a, 2013; Tsou et al., 2012; ICH, 2017). Furthermore, it is
important to assign a sufficient number of patients to each region in order to evaluate the consistency
of the treatment effect across regions (Kawai et al., 2008; Ko et al., 2010; Ikeda and Bretz, 2010;
Quan et al., 2010b; Uesaka, 2009; ICH, 2017).

In the analysis of data from MRCTs there is a very important thing to keep in mind, which there
is no a so-called “global approval” of a medical product. From a regulatory standpoint, an approval
decision is regional; that is, each regional regulatory agency makes its own decision given an identical
set of data from a MRCT. This means that the same set of data from a MRCT may be analyzed
differently to obtain approval from different regional regulatory agencies. The challenge is how to
utilize the entire dataset to assess individual region effects, and how to leverage the data from outside
the local region in a MRCT to make approval decisions in the local region. Therefore, it is very
important to analyze MRCTs data from the viewpoint of regional regulatory agencies (Chen et al.,
2012a; Tsong et al., 2012; Tsou et al., 2010).

2. Motivation

For convenience, let the target region denote the region of interest. Let the treatment effects in both the
target region and the non-target region be denoted by δT and δNT , respectively. It is assumed that the
MRCT has already been conducted. From the viewpoint of the target regulatory agency, an important
issue is to make statistical inference for the treatment effect in the target region (δT ). Keeping this fact
in mind, we consider the following three cases.

2.1. |δT − δNT | = 0

In this case, the treatment effects in both the target region and the non-target region are completely
identical. The target regulatory agency can make accurate statistical inference for the treatment effect
in the target region (δT ) based on the information from both the target region and the non-target region.
The analysis strategy of MRCTs described in Section 1 is based on the assumption of |δT − δNT | = 0.
In other words, when |δT − δNT | = 0, the target regulatory agency can apply the overall trial results to
its own region without any problems. Patients in the non-target region are considered to be identical
to those in the target region for the purpose of estimating the treatment effect in the target region (δT ).
In extreme cases, the target regulatory agency is still able to make accurate statistical inference for
the treatment effect in the target region (δT ) even when there are no patients from the target region,
because δT = δNT .

However, the question arises of how we can be sure that the treatment effects in both the target
region and the non-target region are completely identical (δT = δNT )? It appears to be reasonable to
assume that δT , δNT in MRCTs due to various intrinsic and extrinsic factors, although the differences
in treatment effects between the two regions can be either small or substantial (ICH, 2017).

If δT , δNT , can the target regulatory agency borrow information from the non-target region? In
a mathematical sense, the answer appears to be no, because the treatment effect in the target region
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differs from that in the non-target region. However, if the difference is small and clinically not mean-
ingful, the answer may be yes. Therefore, the key issue is how different the treatment effect in the
target region is from that in the non-target region when δT , δNT .

2.2. |δT − δNT | , 0, but the difference is substantial

In this case, a global development strategy using MRCTs may not be appropriate, and conducting
separate clinical trials in each region may be a better strategy. If the fact that the difference in the
treatment effect between the target region and the non-target region is substantial comes to light after
the MRCT is conducted, it is obvious that the target regulatory agency cannot borrow information
from the non-target region. In such a case, an estimate of the treatment effect only based on the target
region is a reliable estimate of the treatment effect in the target region (δT ). In this paper, we will not
discuss this case anymore.

2.3. |δT − δNT | , 0, but the difference is small and clinically not meaningful

In this case, it may be possible for the target regulatory agency to borrow information from the non-
target region, as the difference in the treatment effect between the target region and the non-target
region is small and clinically not meaningful. Hence, the overall treatment estimator may be more
reliable than the regional treatment estimator, i.e., the treatment effect estimator only based on the
target region.

The purpose of this paper is to provide a statistical rationale which applies when the overall treat-
ment estimator is better than the regional treatment estimator in order to assess the treatment effect in
the target region (δT ). In this paper, for convenience it is assumed that the sizes of the treatment effect
across the non-target regions are the same. And we consider only the fixed-effect model. Considera-
tion of the random-effect model is discussed in Section 7.

3. Notation and review

This paper considers only the viewpoint of the target regulatory agency, as approval decisions are
regional. We consider parallel designs for comparing a test product and a placebo. Let Xi j and Yi j

be the primary endpoints, with large values representing better efficacy for jth patients receiving the
test product and the placebo control, respectively, in the ith region, where i = T , NT denote the target
and the non-target region, respectively. It is also assumed that the number of patients in the test and
placebo groups in each region are identical, that is, j = 1, 2, . . . , ni for i = T,NT .

We also assume the following:

Xi j ∼ N
(
µiX , σ

2
)
, Yi j ∼ N

(
µiY , σ

2
)
.

The primary hypothesis for testing the overall treatment effect is given by

H0 : δ ≤ 0 versus HA : δ > 0, (3.1)

where δ denotes the overall treatment effect. The definition is provided in (3.3) below after the overall
treatment estimator (δ̂) is introduced. The primary alternative hypothesis in (3.1) states that the test
product is effective at a global level.

However, the target regulatory agency is more interested in the regional treatment effect in the
target region; the hypotheses of interest are expressed as

HT0 : δT ≤ 0 versus HT A : δT > 0, (3.2)
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where δT = µT X − µTY . The alternative hypothesis in (3.2) states that the test product is effective in
the target region. If we consider the regional treatment effect as a fixed effect in a fixed-effect model,
letting δi = µiX − µiY be the treatment effect of region i (i = T,NT ), the regional treatment estimator
for region i is

δ̂i = X̄i − Ȳi ∼ N
(
δi,

2
ni
σ2

)
,

where

X̄T =
1

nT

nT∑
j=1

XT, j, ȲT =
1

nT

nT∑
j=1

YT, j,

X̄NT =
1

nNT

nNT∑
j=1

XNT, j, ȲNT =
1

nNT

nNT∑
j=1

YNT, j.

A commonly used overall treatment estimator (δ̂) is a weighted average of the regional treatment
estimators:

δ̂ =
nT δ̂T + nNT δ̂NT

N
= pδ̂T + (1 − p)δ̂NT ,

where N = nT +nNT is the total number of patients in the trial in each treatment arm and p = nT /N. In
the fixed-effect model, the overall treatment effect (δ) is usually defined as follows (Quan et al., 2013,
2014).

δ = pδT + (1 − p)δNT . (3.3)

The regional treatment estimator (δ̂T ) uses data from only the target region. It ignores data from
the non-target region. Owing to the reduced sample size for the target region, it has considerable
variability and may not be an efficient estimator of the treatment effect for the target region. When
there is a significant overall treatment effect, we may use the overall treatment estimator as a more
precise estimator of the treatment effect in the target region.

As discussed in Section 2.1, if δT = δNT , it is clear that the target regulatory agency can use
the overall treatment estimator (δ̂) as an estimate of the treatment effect in the target region (δT ).
Moreover, there are no issues to discuss. Therefore, in this paper, it is assumed that the treatment
effects in both the target region and the non-target region are not completely identical (δT , δNT ), but
the difference is small.

In such cases, it is well-known that the power of interaction test to detect treatment-by-region
interaction is low. With the help of SAS PROC GLMPOWER, the power of interaction test is plotted
in Figure 1 when N = 1,000, δNT = 0.3, and p = 0.2 as the value of δT changes. When δT , δNT and
the difference between δT and δNT is small, the power of interaction test is low. For example, when
δT = 0.1 and δNT = 0.2, the power is less than 10%. Therefore, the conclusion that the treatment
effect is consistent across regions is very likely, despite the small difference in the treatment effect.

In Section 4, we compare δ̂T and δ̂ in terms of the estimation of the treatment effect in the target
region (δT ). In Sections 5 and 6, we investigate the type I error rate and power when the overall
treatment effect estimator (δ̂) is employed to test the treatment effect in the target region (δT ).
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Figure 1: The power of the interaction test when N = 1000 and p = 0.2.

4. The comparison of δ̂Tδ̂Tδ̂T and δ̂̂δ̂δ in terms of the mean square error

In this section, we compare the performance capabilities of the two estimators (δ̂T and δ̂) in order
to estimate the treatment effect in the target region (δT ) when the treatment effects in both the target
region and the non-target region differ slightly (δT , δNT ). The key idea is that the mean square error
(MSE) of δ̂ is smaller than that of δ̂T , although δ̂ is not an unbiased estimator of δT . This is true
because the sample size in δ̂ is usually much larger than that in δ̂T , and the difference between the
treatment effects in the target region and the non-target region (|δT − δNT |) is assumed to be small.

4.1. Unbiasedness

It is clear that E[δ̂T ] = δT ; hence, the regional treatment estimator (δ̂T ) is unbiased. However, when
|δT − δNT | , 0, because

E
[
δ̂
]
= E

[
pδ̂T + (1 − p)δ̂NT

]
= pδT + (1 − p)δNT , δT ,

the overall treatment estimator (δ̂) is not an unbiased estimator of δT .

4.2. The mean square error

Given that the regional treatment effect estimator (δ̂T ) follows the following distribution

δ̂T = X̄T − ȲT ∼ N
(
δT ,

2
nT
σ2

)
,

the MSE of δ̂T is given as follows.

MSE
[
δ̂T

]
= Bias2 + Variance =

2
nT
σ2.
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Figure 2: The mean square errors (MSEs) of the overall treatment effect estimator and the regional treatment
effect estimator when |δT − δNT | = 0.1.

Similarly, because

p2 2
nT
σ2 + (1 − p)2 2

nNT
σ2 =

2
N
σ2,

we have

δ̂ = pδ̂T + (1 − p)δ̂NT ∼ N
(
pδT + (1 − p)δNT ,

2
N
σ2

)
.

Therefore, the MSE of δ̂ is given as follows.

MSE
[
δ̂
]
=

[
(1 − p) (δNT − δT )

]2
+

2
N
σ2.

When |δT − δNT | = 0, it is clear that the MSE of δ̂ is smaller than that of δ̂T . When the difference
between the treatment effects in the target region and the non-target region (|δT − δNT |) is assumed to
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Figure 3: The mean square errors (MSEs) of the overall treatment effect estimator and the regional treatment
effect estimator when |δT − δNT | = 0.2.

exist but is small, Figures 2 and 3 are helpful when attempting to understand the relationship between
the MSEs of δ̂ and δ̂T .

If we compare the two MSEs analytically, we have

MSE
[
δ̂
]
=

[
(1 − p)(δNT − δT )

]2
+

2
N
σ2 <

2
N p

σ2 = MSE
[
δ̂T

]
⇔ |δNT − δT | <

√
2
N

1
p(1 − p)

σ2. (4.1)

The inequality in (4.1) shows us the maximum allowable difference of the treatment effect between
the target region and the non-target region (|δNT − δT |) such that the MSE of δ̂ is smaller than that of
δ̂T . As N increases and p approaches 0.5, the quantity on the right-hand side of (4.1) decreases and
the MSE of δ̂T is likely to be smaller than that of δ̂, which can be checked in Figures 2 and 3.
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5. The comparison of δ̂Tδ̂Tδ̂T and δ̂̂δ̂δ in terms of the type I error rate

In this section, we compare the type I error rates of the two estimators (δ̂T and δ̂) in order to determine
if the test treatment is effective in the target region (δT > 0) when the treatment effects in both the
target region and the non-target region are slightly different (δT , δNT ).

5.1. Test based on δ̂T

The hypothesis of interest for the target regulatory agency is expressed as (3.2). The test statistic
based on δ̂T can be constructed as follows.

TT =
δ̂T − δT√
2S 2

T,p/nT

,

where

S 2
T,p =

(nT − 1)S 2
T,X + (nT − 1)S 2

T,Y

2nT − 2
,

S 2
T,X =

1
nT − 1

nT∑
j=1

(
XT, j − X̄T

)2
, S 2

T,Y =
1

nT − 1

nT∑
j=1

(
YT, j − ȲT

)2
.

Although TT follows a t distribution with (2nT −2) degrees of freedom, we utilize the standard normal
distribution as the null distribution of TT , as (2nT − 2) is usually larger than 30. The rejection region
of TT is then the set which satisfies TT > 1.96, and the type I error rate of TT is approximately 2.5%.

5.2. Test based on δ̂

In this subsection, we test the treatment effect in the target region (δT ) based on the overall treatment
effect estimator (δ̂). The hypothesis of interest is still given by (3.2) and the test statistic can be devised
as follows.

TO =
δ̂ − δT√
2S 2

p/N
=

pδ̂T + (1 − p)δ̂NT − δT√
2S 2

p/N
,

where

S 2
p =

(N − 1)S 2
X + (N − 1)S 2

Y

2N − 2
,

S 2
X =

1
N − 1

 nT∑
j=1

(
XT, j − X̄

)2
+

nNT∑
j=1

(
XNT, j − X̄

)2
 , X̄ =

1
N

 nT∑
j=1

XT, j +

nNT∑
j=1

XNT, j


S 2

Y =
1

N − 1

 nT∑
j=1

(
YT, j − Ȳ

)2
+

nNT∑
j=1

(
YNT, j − Ȳ

)2
 , Ȳ =

1
N

 nT∑
j=1

YT, j +

nNT∑
j=1

YNT, j

 .
In most MRCTs, we assume δT = δNT . Under such an assumption, the rejection region of TO is the
set which satisfies TO > 1.96, and the type I error rate of TO is approximately 2.5%.
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Table 1: The type I error rate for δ̂ (%) (δT = 0)

p δNT = 0.05 δNT = 0.01
N = 500 N = 1,000 N = 500 N = 1,000

0.1 10.59 17.01 3.46 3.93
0.2 9.22 14.33 3.34 3.74
0.3 7.98 11.95 3.22 3.57
0.4 6.87 9.87 3.11 3.39
0.5 5.88 8.06 3.00 3.23
0.6 5.01 6.52 2.89 3.07
0.7 4.25 5.21 2.79 2.92
0.8 3.58 4.13 2.69 2.77
0.9 3.00 3.23 2.59 2.63
1.0 2.50 2.50 2.50 2.50

However, the main purpose of this paper is to investigate what would occur if δT , δNT and the
difference is small. When δT , δNT , the type I error rate of TO for testing the hypothesis in (3.2) is as
follows.

P (TO > 1.96|H0 : δT = 0, δT , δNT ) = P

 p
(
δ̂T − 0

)
+ (1 − p)

(
δ̂NT − δNT

)
+ (1 − p)δNT√

2S 2
p/N

> 1.96


≃ 1 − Φ

1.96 − (1 − p)δNT√
2σ2/N

 .
Therefore, the type I error rate is greater than the nominal level when δT , δNT and δNT > 0. In other
words, when the test treatment is effective only in the non-target region (δNT > 0) and, not in the
target region (H0 : δT = 0), if we test the treatment effect in the target region (δT ) based on the overall
treatment effect estimator (δ̂), the type I error rate is inflated. This is the price the target regulatory
agency has to pay to borrow the information from the non-target region. This inflation of the type I
error rate may be of concern to the target regulatory agency. On the other hand, if δT = 0 and δNT < 0,
the type I error rate is deflated.

Table 1 shows the type I error rate of δ̂ when δT = 0 for δNT = 0.05 and 0.01. As the value of
p increases from zero to one, the type I error rate approaches 2.5%. When p = 1.0, the target region
is as identical to the overall population, and the type I error rate becomes 2.5%. Because the value
of δNT is positive, the type I error rates are inflated for all values of p except p = 1.0. For example,
when p = 0.2 and δNT = 0.05 in Table 1, the type I error rates are 9.22% and 14.33% for N = 500
and N = 1,000 respectively. For even a small difference in the treatment effect, such as δT = 0
and δNT = 0.05, the inflation of the type I error rate is substantial. Note that p = 0.2 is one of the
recommended sample sizes for the target region according to the Japanese guideline (MHLW, 2007).

6. Comparison of δ̂Tδ̂Tδ̂T and δ̂̂δ̂δ in terms of power

In this section, we compare the powers of the two estimators (δ̂T and δ̂) in order to test the hypothesis
in (3.2). Before we compare the powers of δ̂T and δ̂, it is necessary to consider the two factors below.

1. In order to investigate the power for testing the hypotheses in (3.2), we should assume that δT > 0.

2. The main purpose of this paper is to investigate what would occur if δT , δNT and the difference
is small.
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Figure 4: The powers of δ̂T and δ̂ at δNT = 0.05 and p = 0.2.

Therefore, we compare the powers of δ̂T and δ̂ with two different methods.

6.1. Power as the value of δT increases

In this subsection, the powers of δ̂T and δ̂ are computed as the value of δT changes when the values
of δNT , p, and N are fixed. For illustration purposes, the powers of δNT = 0.05, p = 0.2, and N = 500
are presented in Figure 4. The powers of δ̂T and δ̂ increase as the value of δT increases. In Figure 4
δT = 0.05 and δT = 0.163 are denoted by a and b on the x-axis, respectively. Figure 4 shows that the
powers of δ̂ are greater than those of δ̂T in the range of 0 < δT < 0.163, as the sample size of δ̂ is
larger than that of δ̂T through the borrowing of information from the non-target region.

However, when δT > 0.163, the power order is reversed, indicating that the powers of δ̂T are
greater than those of δ̂ despite the fact that the sample size of δ̂ is larger than that of δ̂T . This occurs
because the value of δT (δT > 0.163) is much greater than the value of δNT (δNT = 0.05). Although
δ̂ borrows information from the non-target region, this information does not contribute much to the
increase in power, because δT > δNT .

6.2. Power as the value of N increases

In this subsection, the powers of δ̂T and δ̂ are computed as the sample size (N) changes when the
values of δNT , p, and δT are fixed. In Figure 5 the powers are calculated in the four cases (δT , δNT ) =
(0.05, 0.1), (0.1, 0.1), (0.2, 0.1), and (0.3, 0.1) when p = 0.2. Given that p = 0.2, the sample size of the
target region is smaller than that of the non-target region. Therefore, even when (δT , δNT ) = (0.1, 0.1),
the powers of δ̂ are larger than those of δ̂T . As the value of δT changes from 0.05 to 0.3, the difference
in the powers of δ̂T and δ̂ is reduced.

From Figure 5, we find that the powers of δ̂ are greater than those of δ̂T unless δT is much larger
than δNT . This is the main advantage of the overall treatment effect estimator (δ̂) compared to the
regional treatment effect estimator (δ̂T ). This advantage is realized by sacrificing the type I error, as
discussed in Section 4.
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Figure 5: The powers of δ̂T and δ̂ at p = 0.2.

7. Discussion and concluding remarks

One of the problems associated with MRCTs is that there is no a global approval despite the fact
that there is a pre-specified confirmatory analysis in the protocol. Therefore, each regional regulatory
agency must make its own decisions based on its own analyses given an identical set of data from a
MRCT. Under this situation, in this paper we compare two estimators (δ̂ and δ̂T ) which can be used
to estimate the treatment effect in the target region (δT ).

If the treatment effects in both the target region and the non-target region are completely identical
(δT = δNT ), the overall treatment effect estimator (δ̂) is more efficient than the regional treatment
effect estimator (δ̂T ), which means that the power of δ̂ is greater than that of δ̂T while the type I error
rate of δ̂ is held under the nominal level.

On the other hand, if δT , δNT and the difference is small, a conventional method to estimate the
treatment effect in the target region is to extrapolate the overall result to that region. In this paper, we
investigate the statistical implications of such an extrapolation. Specifically, we show that, if the total
sample size (N) is sufficiently larger than the sample size in the target region (nT ) and |δT − δNT | is
small, then the MSE of δ̂ is smaller than that of δ̂T despite the fact that δ̂ is not unbiased estimator of
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δT . We also show that the powers of δ̂ are greater than those of δ̂T in exchange for inflating the type I
error rates unless δT is much larger than δNT .

Another important issue is to distinguish “substantial” in the Section 2.2 from “small and clinically
not meaningful” in the Section 2.3. This requires clinical judgement. For convenience of explanation,
let us consider a hypothetical weight loss test treatment. Suppose that this weight loss test treatment
reduces weight by 0.5 kg compared to placebo. Since 0.5 kg is not mathematically zero, it is true
that the test treatment definitely reduces weight. However, the amount of weight lost is so small
that no medical doctor will prescribe the test treatment. In other words, the test treatment has no
clinical significance. Therefore, a new weight loss test treatment would have clinical significance
only if weight reduction was sufficient. The question is how much weight should a new weight loss
test treatment reduce in order to have clinical significance. This reference point is determined by
clinicians, not statisticians. The problem is that the opinions of clinicians may differ.

Now, let us consider the problem of comparing δT and δNT . Whether the difference between δT

and δNT is substantial is also a matter of clinical judgement, not statistical judgement. A problem is
that opinions may differ between clinicians. There may be controversy in setting this value.

Anyhow, suppose that there is a positive value d such that the difference between δT and δNT is
decided to be substantial if δT −δNT > d. Since δT and δNT are unknown parameters, there is no way to
know for sure if δT −δNT > d is satisfied. However, using the following statistical method may reduce
the probability of making an erroneous decision. If the lower bound of 95% confidence interval of
δT − δNT is greater than d, we conclude that the difference between δT and δNT is substantial.

If the value of d is much greater than zero and the sample size is huge, then the 95% confidence
interval of δT − δNT may fall between (0, d) interval, and we can conclude that the difference between
δT and δNT is small and clinically not meaningful. However, if such conditions are not satisfied, it is
usually very difficult to distinguish statistically between “no difference” in the Section 2.1 and “small
and clinically not meaningful” in the Section 2.3.”

In addition to the fixed-effect model, the random-effect model has been studied for MRCTs (Chen
et al., 2012b; Hung et al., 2010). However, only the fixed-effect model is considered in this paper.
Although the random-effect model has some advantages, it is not considered in this paper due to the
following reasons.

• It is very difficult to accept that regions in MRCTs are randomly sampled from infinitely many
regions. Regions in MRCTs are usually chosen, for instance, by considering disease prevalence
and economic factors such as market sizes and the cost of clinical trials.

• It is the treatment effect in the target region (δT ) that attracts the most interest from the target
regulatory agency. However, under the random-effect model, the treatment effect in the target
region is a random variable and, not a fixed parameter. Hence, it is impossible to estimate the
treatment effect in the target region, because it is a random variable, though it is possible to predict
it. Furthermore, it is impossible to conduct statistical hypothesis testing for the treatment effect in
the target region (δT ).
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