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Tests of equality of several variances with the likelihood
ratio principle
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“Department of Statistics, Cheongju University, Korea

Abstract

In this study, we propose tests for equality of several variances with the normality assumption. First of
all, we propose the likelihood ratio test by applying the permutation principle. Then by using the p-values
for the pairwise tests between variances and combination functions, we propose combination tests. We apply
the permutation principle to obtain the overall p-values. Also we review the well- known test statistics for the
completion of our discussion and modify a statistic with the p-values. Then we illustrate proposed tests by
numerical and simulated data and compare their efficiency with the reviewed ones through a simulation study
by obtaining empirical p-values. Finally, we discuss some interesting features related to the resampling methods
and tests for equality among several variances.
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1. Introduction

In statistics, the mean or location parameter has been of main interest for the statistical inference re-
gardless of the parametric or nonparametric approach. The variance or scale parameter has always
been treated as a nuisance parameter, but appears to have unnegligible roles for the results of data
analysis, since sometimes one tries to check if the assumptions for the equality of variances is vali-
dated or not. For example, when one analyzes data with two-sample #-test, one assumes that the two
variances are equal even though the value is not known. Then many procedures of statistical software
provide outputs which tell us that the assumption between two variances are appropriate or not. Also
tests for equality between two variances has been fully developed and widely applied in both para-
metric and nonparametric approach. For the comparison procedure among means with three or more
samples, one may find some results about equality of variances in the ANOVA procedure in SAS.

As a matter of fact, the inferences about variance or variances have been scarcely reported in
comparison with those about mean or means. One reason for this phenomenon may come from the
fact that it would be difficult to construct any suitable form of statistic for testing equality among more
than two variances or interpret the form of the likelihood ratio (LR) function and/or derive the null
distribution of corresponding the LR function even under the normality assumption. There does not
seem to exist either the LR procedure or an asymptotic procedure related to the LR approach in the
literature except the Bartlett test (Bartlett, 1937). Only several heuristic ad hoc or modified procedures
have been published and used by practitioners. The Bartlett test (Bartlett, 1937) appears first in the
literature to test equality of more than two variances. The statistic resembles a function of the LR
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statistic to be able to obtain the null distribution even though an asymptotic result by modifying with
some quantities related to the sample sizes. Hartley (1950) proposed a procedure based on the quotient
of the maximum and minimum of individual sample variances. Hartley’s test is easy to perform but
is sensitive to departures from normality (Hand and Nagaraja, 2003). Then Levene (1960) considered
a procedure with the data transformation by subtracting the sample mean and then taking absolute
values for each observation. Also Brown and Forsythe (1974) modified the Levene’s test by using
sample medians instead of the sample means. Since then several modified tests have been proposed.
All the null distributions for tests reviewed up to are asymptotic ones. Also O’Brien (1979, 1981)
further modified the Levene’s statistic. The main idea behind the O’Brien test is to transform the
original scores so that the transformed scores reflect the variation of the original scores. Recently,
Gokpinar and Gokpinar (2017), Chang ef al. (2017) and Jayalath et al. (2017) considered some
improvements of the tests reviewed in the above in terms of power and achieving the significance
level. Especially, Gokpinar and Gokpinar (2017) and Jayalath et al. (2017) have tried to apply the
bootstrap method.

The LR test requires exact specification or assumption of the population distributions. Especially,
for the LR tests for the means and variances, one almost always assumes the normality and can use
the well- known results for the null distributions of the corresponding LR statistics. Or when it would
be difficult to derive the exact null distributions theoretically, it is common to obtain the limiting or
asymptotic distributions based on the LR arguments. Sometimes even the derivation of an asymptotic
distribution would not be possible or the serious discrepancy of an asymptotic distribution from the
unknown distribution of the LR statistic might be detected from a simulation study. Then one may
apply the Monte-Carlo method (Park, 2018).

With high development of computer capacity and its softwares, the distributions for test statis-
tics have heavily been dependent on the resampling methods such as the bootstrap and permutation
methods. Only the difference between both can be summarized as with replacement and without re-
placement when one resamples from the original data set. However it has been known that the results
for both methods may be quite different (Good, 2000). If both methods can be applied for testing,
the use of the permutation principle has been recommended (Good, 2000; Pesarin, 2001) since the
permutation principle estimates the unknown distribution while the bootstrap method does the param-
eter. It is usual that the permutation principle may be applied with the Monte-Carlo approach. For the
optimal number of iterations when the permutation principle can be applied, Oden (1991) and Boos
and Zhang (2000) have studied some. For more discussion for the resampling methods, you may refer
to Westfall and Young (1993) and Good (2000).

In this paper, we propose test procedures for testing equality of several variances simultaneously.
For this purpose, the rest of this paper will be organized as follows. In the Section 2, first of all, we
derive the LR function under the normality assumption. Then we propose the LR test which is intu-
itively easy to use and requires the minimal computations by applying the permutation principle to
obtain the p-value. Also by examining the LR statistic in detail, we observe that the LR statistic con-
sists of LR statistics for testing equality between two variances. Based on this fact, we consider using
the combination functions to combine individual tests for equality between two variances. We also
apply the permutation principle to obtain the overall p-values of the proposed combination tests. In
the Section 3, we review the well-known test statistics briefly and modify a statistic with the individual
p-values instead of the sample variances in the spirit of our proposed test to alleviate the discrepancy
to departure of normality. Then we illustrate our procedure with numerical and simulated data and
compare the efficiency of our proposed tests with other well-known ones in the Section 4. Finally
we discuss some interesting features related with the test of equality of variances and re-sampling
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methods and state the future research topics briefly in the Section 5.

2. Tests of equality of several variances

Suppose that we have K independent samples X;i, ..., Xj,, from populations with distributions, N(u;,
o-iz), i=1,...,K. Then it is of our main interest to test

HO:O'%=-~=0'%(=0'2
against H; : not Hy. In order to derive the LR test, first of all, we introduce notation in the following.
Foreachi,i=1,...,K

n; ni
Xi=nliZXij and S%Z%Z(Xij_xi)z'
=1

J= J=1

We note that all the X;’s and S l.z’s are the maximum likelihood estimates of y;’s and o-l.z’s, respectively
under Hy U H; but § iz’s are not unbiased. Also we have that

K

1
2 § 2
Sp = - n,~$ i
i=1

where n = YX, n;. We note that S [2, is the maximum likelihood estimate of o> under Hy but not
unbiased, too. Then the LR function, LR(02, ..., 0%; X) is

Sup{l—[i,il H};izl f(Xij;O—,?|H0 U H1)}
Sup{H,{il H”i,1 f(Xij;0'2|H0)}

(s3)°

e, (s2)°

K SZ ’EI

_ p

- ﬂ[ﬁ] , @2.1)
i=1 i

where f is the probability density function for the normal. Then one may reject Hy in favor of H;
for some large values of LR(O’%, .. .,o-f(;X). In order to complete the LR test, we need the null
distribution of LR(O‘%, - ,o-%(;X) but it would be difficult to derive the null distribution since the
numerator and denominator in (2.1) are not independent. Then one may detour this difficulty via
the limiting distribution approach for 2 log LR(U’%, cens o-i; X), where log means the natural logarithm
and will be used with the same context in the sequel. However we have found that the discrepancy of
the limiting distribution of 2 log LR(a‘%, ey o-%(; X) from the unknown distribution was serious from a
preliminary simulation study since the nominal significance level could not be achieved even for the
normal distribution. For this reason, we have considered using the permutation method to obtain the
null distribution G, say, of LR(c?,...,0%; X) or 2logLR(c?, ..., 0%; X). Then we note that the LR
test would be intuitively apparent and easy to use owing to the permutation distribution. Before we
proceed to propose more test procedures, we briefly indicate the use of the permutation principle with

LR (0},...,0%:X) =
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the Monte-Carlo approach to be applied to the multiple samples in the following. You may refer to
Westfall and Young (1993) for more explanations and applications.

(I) Combine the K samples into a one sample, X, ..., X,, say.

(Il) With a suitable random configuration scheme, rearrange Xi,..., X, as X’l’ ,..., XU, say, with
X/ # X7 whenever 1 <i# j<n.

(1)) Allocate X7,..., Xy, as the first sample and do X} ..., X} ., as the second sample and keep
on up to X5K71+1’ ..., X as the K" sample.

(IV) Calculate the value of LR(a'f, ey 0'%; XP) or 2log LR(O’%, e, o-%{; XP).

(V) Iterate M times from (II) to (IV) and obtain empirical distribution function Gy of LR(o-f, R
o-%{; X) or 2log LR(O’%, e, 0'%(; X) from the M number of LR(O‘%, e, 0'%(; XP)s or 2log LR(O'%,
2.
e O XP)s.

Then we may complete the LR test by obtaining p-value using the steps for the permutation principle
stated above. On the other hand, we note that the LR function (2.1) has the form of the product of the
following terms: foreachi,i=1,...,K

2\7 " 2 2 2 2\%
(Sp]z _ (’ﬁ)z (nlSl - n,-_lSi_l 14 I’l,'+15i+1 . nKSK]2 .

S? n nS? nS? nS? nS?

In other words, the LR function (2.1) consists of all the components such as (n;S %)/(n S 3) and

(ani)/(n,»SiZ) for testing Hy;j : 07 = 0'3 against Hy;j : o7 # o-? for 1 < i # j < K. This fact
makes us to consider another type of test procedure for testing Hy : 0 = - -+ = 0'2 = ¢? via applying
the combination functions. Then there are K(K — 1)/2 numbers of sub null hypotheses for testing
Hy;; - 0'1.2 = 0'3 using (n,-Siz)/(anﬁ) or (an?)/(niS?). This implies that one may reject Hy;; : o-l.2 = 0'?
in favor of Hy;; : 0'1.2 * o-? for some large or small values of (niSiz)/(anﬁ) or (an?)/(niSiz). However
we note that (n;S iz) [(n;S ?) and (n;S ?) /(n;S ?) are reciprocal forms for each other. Also we note that

all the (n,-Sf)/ (n jSﬁ)s do not have the same distribution since their distributions have different dfs
even though they all are members of the F-distribution family. Therefore one cannot combine them
directly. One approach to avoid this difficulty is to use the individual p-values of the individual test,
2 = 2. For doing this, first of all, we need following well-known result. Without loss of

H(),' j o i
generality, from now, we will assume that 1 <i < j < K.

Lemma 1. UnderHO:0'%=~'=o'%(=cr2,f0reachiandj, 1<i<j<K,

l’l,'(l’lj— 1)S12
AP )
(n; l)n_,Sj

distributed as F with n; — 1 and n; — 1 dfs.

Let A;; be the p-value for testing Hy; : ‘7[2 = 0'3 based on F;;. Then we combine K(K — 1)/2 numbers
of p-values by choosing a suitable combination function. The famous and widely used combination
functions are as follows. Pesarin (2001) presented a concise review and investigated extensively the
properties of the combination functions.
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(1) Fisher combination (FC) function

FC=-2 ' log(l-Ay).

1<i<j<K
(2) Liptak combination (LC) function

Le= ) ¥lay),

1<i<j<K
where W is a distribution function and ¥, its inverse.
(3) Tippett combination (TC) function

TC:min{A;j;1Si<jSK}.

Then the testing rule would be to reject Hy : o-% = = o-%( = o for some small values of each
combination function. To complete the test Hy : o-f = ... = 0'%( = o2, we have to derive the

null distributions of the combination functions. However since the components are not independent,
it would be difficult to obtain the null distributions in theoretic manner. Therefore we will use the
permutation principle to obtain the null distributions for the combination functions.

Then we may carry out to test Hy : 0'% = = 0'%( = o by choosing a suitable test from the
proposed ones and applying the permutation principle using the steps stated previously for estimating
the null distributions of the combination functions. In relation to our proposal of test procedures for
testing Hy : 07 = -+ = 0% = 0%, we briefly review some test statistics which are famous and widely
used to compare the structure of test statistics with the proposed ones. In the next section, we will

deal with this subject in some detailed fashion.

3. Other test statistics

In this section, we review the well-known test statistics and modify one of them using A;;’s which are
p-values for testing Hy;; : a’i2 = a’f for i # j introduced in the previous section. First of all, we note
that Bartlett (1937) proposed a test basically based on the LR function (2.1). By abusing the usage of
notation, we assume that S I.z’s and S f, are unbiased estimates of o-l.z’s and o2, under Hy U H, and Hy,
respectively. Then the Bartlett statistic BA can be defined as

s (Ehah o) rmn (-

Then we note that one may obtain the numerator of BA by taking logarithm, multiplying 2 and sub-
tracting 1 from n; for each i for (2.1). The purpose of a modification of 2 log LR(o-f, ces o-i; X) into
BA was to make the approximation to the chi-square distribution better (Bartlett, 1937). This in turn
implies that the limiting distribution of 2 log LR(O'%, cees 0'%(; X) cannot be a chi-square with K — 1 df.
In relation with the sample variances, Hartley (1950) also proposed a test using the following statistic,
HA

5

) (n—K)log($2) - 2K, (n; - 1) log(s?) ) PRI 1)10g(§

~ 9

BA

max {$2;1 < i < K}

HA =
min{S?;l SisK}
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Table 1: Doughnut fat absorption data

Amount of fat absorbed

Fat 1 Fat 2 Fat 3 Fat 4
164 178 175 155
172 191 193 166
168 197 178 149
177 182 171 164
156 185 163 170
195 177 176 168

the ratio of the largest sample variance relative to the smallest sample variance. Then the testing
rule would be reject Hy for some large values of HA. Pearson and Hartley (1970) have provided
critical values of HA for some selected sample sizes and significance levels. It is also known to be
very sensitive to departures from the normality assumption. However we note that HA resembles the
Tippett combination function. For this reason, we may modify the statistic HA using A;; such as

mln{Aij;l Si<j§K}

THA = .
max{A,-j;l <i<j< K}

Then the testing rule would be to reject Hy for some small values of THA. The null distribution of
THA can be obtained by the permutation principle. We will use THA instead of HA when we consider
to show examples and carry out simulation study. In order to avoid the sensitivity to departures from
normality assumption, Levene (1960) proposed a test using the following statistic,

(n - K) Zzlil n; (Z, - Z)Z

k-3 3 (2-2)

where Z;; = |X;; — Xi|. Also Z; and Z are the means of Z;, . .., Z;, and all the Z;;’s respectively. Then
the testing rule would be to reject Hy for some large values of and the limiting distribution of W is
known as F-distribution with K — 1 and n — K df. The Levene test has been popular and widely used
with various modification forms. Especially Brown and Forsythe (1974) modified the Levene statistic
by using median instead of the mean in computing the spread within each group. Brown and Forsythe
(1974) performed several simulation studies by varying Z such as trimmed mean and median.

Then it would be interesting to compare the efficiency among those proposed and reviewed tests
for testing Hy : 0 = --- = 0% = o in the next section. For the Hartley’s test, we will use THA
rather than HA since it is known that the test based on HA is sensitive to departure from normality.
Then we will begin the next section by illustrating our proposed tests with two examples which are

real and simulated data.

4. Examples and simulation results

In this section, we begin with the illustration of our test procedure with a numerical example for
absorption in various amounts of fat during cooking doughnuts reported from the Iowa Agricultural
Experiment Station (Lowe, 1935) summarized in Table 1. For each of four fats, six batches of dough-
nuts were prepared. The data in Table 1 are the grams of fat absorbed per batch. Initially, Snedecor
and Cochran (1989) performed to test Hy : 05 = -+ = 0 = o against H; : not Hy, by applying
the Bartlett test and obtained insignificant result. We consider 7 different tests proposed and reviewed
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Table 2: p-values for doughnut data

Test LR FC LC TC THA BA w
p-value 0.5709 0.5070 0.5877 0.6038 0.5971 0.6258 0.3613

LR = likelihood ratio; FC = Fisher combination; LC = Liptak combination; TC = Tippett combination; THA = Tippett and
Hartley test; BA = Bartlett statistic; W = Levene test statistic.

Table 3: Simulated data

Data for class

1 2 3 4
7.40 8.84 8.09 7.55
6.18 6.69 7.96 5.65
6.86 7.12 5.31 6.69
7.76 7.42 7.39 6.50
6.39 6.83 0.51 5.46
5.95 5.06 7.84 7.40
7.48 5.35 6.28 8.37

Table 4: p-values for simulated data
Test LR FC LC TC THA BA w
p-value 0.3804 0.1643 0.2032 0.2507 0.2768 0.0106 0.1247

LR = likelihood ratio; FC = Fisher combination; LC = Liptak combination; TC = Tippett combination; THA = Tippett and
Hartley test; BA = Bartlett statistic; W = Levene test statistic.

ones up to now. Especially for the Hartley test, we use the THA rather than the HA for the test statistic
in order to sensitivity to departure of normality. The distributions used for the Bartlett and Levene
tests are chi-square with 3 df and F' with 3 and 20 df, respectively. For the rest, we applied the per-
mutation principle with the Monte-Carlo approach to obtain the p-values with 10,000 repetitions on
SAS/IML with PC-version. The respective p-values for this example are summarized in Table 2 and
show the insignificance for equality among variances.

Snedecor and Cochran (1989) also considered simulated data tabulated in Table 3 for testing Hy :
o} =--- =03 = o against H; : not Hy in order to observe initially the behaviors of the Bartlett and
Levene tests when the assumption of normality is violated. In Table 3, four independent samples with
n; = 7 for all i were drawn from the T distribution with 3 df (a symmetrical long-tailed distribution)
with the number 7 added. Snedecor and Cochran (1989) applied both Bartlett and Levene tests and
observed that the Bartlett test yielded significance result which is absurd since all the data were drawn
from the same distribution. Also we considered 7 tests used in the previous example and obtained
p-values which are summarized in Table 4. We note that except the Bartlett test, all the other ones
show insignificance in terms of p-values. Also we will note once again this absurdity in the Bartlett
test from the sequel simulation study

We compare efficiency among 7 tests considered up to through simulation study by obtaining
empirical p-values. For this, we considered the three-sample case and four different distributions such
as normal, Laplace, logistic and uniform, which are all symmetric. We have drawn random numbers
with unit variance for all cases and varied values of the standard deviation from 1 to 2 with increment
0.2 only for the third sample. We considered two cases for the sample sizes such as n; = n, = n3 = 15
and n; = 15, np = 20, and n3 = 25. We have carried out 10,000 simulations and applied the
permutation principle to obtain the distribution with 2,000 repetitions within a simulation for each
case. The nominal significance level has been chosen as 0.05 for all case. All the computations
were carried out with SAS/IML with PC-version. The obtained empirical p-values are summarized in
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Table 5: Empirical p-values for normal distribution

(01,02,03)
Test (1, n2,13) LD 1.1,12) (1,1,14) (1,1,1.6) 1,18 @12
LR 0.0464 0.1145 0.2801 04837 0.6667 0.7908
FC 0.0470 0.0993 0.2153 0.3313 0.4206 0.4798
LC 0.0491 0.1056 0.2521 0.4302 0.6010 0.7294
TC (15,15, 15) 0.0470 0.1084 0.2583 0.4499 0.6270 0.7575
THA 0.0480 0.1042 0.2523 0.4485 0.6297 0.7629
BA 0.0498 0.0980 0.2388 0.4326 0.6240 0.7718
w 0.0586 0.1039 0.2256 0.3961 0.5572 0.6927
LR 0.0474 0.1354 03310 0.6342 0.8066 0.9075
FC 0.0481 0.0991 0.2355 0.3714 0.4628 05116
LC 0.0481 0.1091 0.2873 0.5179 0.7036 0.8321
TC (15,20,25) 0.0482 0.1129 03138 0.5571 0.7475 0.8660
THA 0.0482 0.1081 0.3135 0.5808 0.7483 0.8698
BA 0.0476 0.1111 0.3155 0.5808 0.7865 0.9035
W 0.0575 0.1092 0.2815 0.5019 0.7021 0.8349

LR = likelihood ratio; FC = Fisher combination; LC = Liptak combination; TC = Tippett combination; THA = Tippett and
Hartley test; BA = Bartlett statistic; W = Levene test statistic.

Table 6: Empirical p-values for Laplace distribution

(01,02,03)
Test (1, n2,13) LD (,1,12) (1,14 (L1,1.6) @118 W)
LR 0.0483 0.0916 0.1918 0.3180 0.4435 0.5490
FC 0.0493 0.0822 0.1402 02115 0.2805 0.3404
LC 0.0481 0.0868 0.1711 0.2819 0.3991 0.5058
TC (15,15,15) 0.0478 0.0874 0.1764 0.2910 0.4140 0.5251
THA 0.0488 0.0857 0.1766 0.2907 0.4126 0.5192
BA 0.2424 0.2894 0.3953 0.5151 0.6283 0.7309
w 0.0651 0.0968 0.1702 0.2698 0.3851 0.4996
LR 0.0503 0.0990 0.2423 0.4099 0.5594 0.6843
FC 0.0479 0.0785 0.1480 0.2327 0.3077 0.3671
LC 0.0496 0.0824 0.1838 0.3242 0.4654 0.5885
TC (15,20,25) 0.0502 0.0841 0.1927 0.3453 0.4931 0.6192
THA 0.0524 0.0838 0.1927 0.3435 0.4933 0.6169
BA 0.2447 0.3181 0.4678 0.6263 0.7559 0.8516
w 0.0645 0.0901 0.1870 0.3272 0.4779 0.6201

LR = likelihood ratio; FC = Fisher combination; LC = Liptak combination; TC = Tippett combination; THA = Tippett and
Hartley test; BA = Bartlett statistic; W = Levene test statistic.

Tables 5-8. First of all, we note that except normal distribution, the Bartlett test hardly have achieved
its nominal significance level whose phenomenon have already been pointed out by many statisticians.
Among other tests, the LR test performs the best in terms of the empirical powers and is convenient to
use since it only requires the computation of the LR function (2.1) or 2 log LR(O’%, e, 0'%(; X) without
any further consideration. Only the Tippett and Hartley tests may compete with the LR test in terms of
powers but require the three individual tests for Ho;; : 0'[2 = 0'?, 1 <i < j<3. Asone may expect, the
Tippett and Hartley with THA yielded very similar results for all distributions and sample sizes. Also
the LR test protects the departure of normality well. In general, we note that the Fisher test showed
relatively low performance.

5. Some concluding remarks

In general, the research in variance or scale parameters have been retarded compared with that of
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Table 7: Empirical p-values for logistic distribution

(01,02,03)
Test (1, n2,13) LD 1.1,12) (1,1,14) (1,1,1.6) 1,18 @12
LR 0.04%6 0.1042 0.2392 0.4036 0.5532 0.6813
FC 0.0480 0.0890 0.1735 0.2689 0.3529 0.4164
LC 0.0483 0.0958 0.2110 0.3593 0.5091 0.6298
TC (15,15, 15) 0.0487 0.0974 0.2202 0.3755 0.5274 0.6521
THA 0.0488 0.0982 0.2212 0.3737 0.5255 0.6491
BA 0.1218 0.1756 0.3061 0.4633 0.6146 0.7419
w 0.0585 0.0953 0.1951 0.3269 0.4726 0.6124
LR 0.0499 0.1254 03153 0.5285 0.6991 0.8143
FC 0.0476 0.0926 0.1883 0.2979 0.3864 0.4433
LC 0.0509 0.0982 0.2390 0.4247 0.5917 0.7282
TC (15,20,25) 0.0492 0.0992 0.2604 0.4578 0.6296 0.7620
THA 0.0516 0.0995 0.2581 0.4600 0.6285 0.7612
BA 0.1221 0.1991 0.3874 0.5971 0.7660 0.8774
W 0.0559 0.1026 0.2406 0.4278 0.6156 0.7669

LR = likelihood ratio; FC = Fisher combination; LC = Liptak combination; TC = Tippett combination; THA = Tippett and
Hartley test; BA = Bartlett statistic; W = Levene test statistic.

Table 8: Empirical p-values for uniform distribution

(01,02,03)
Test (1, n2,13) LD 1.1,12) (1,1,14) (I,1,1.6) @1,18) 012
LR 0.0473 0.1648 04735 0.7542 0.9050 0.9637
FC 0.0462 0.1491 0.3952 0.5191 0.5965 0.6336
LC 0.0467 0.1519 0.4229 0.6892 0.8474 0.9319
TC (15,15, 15) 0.0468 0.1544 0.4393 0.7213 0.8814 0.9528
THA 0.0481 0.1475 0.4374 0.7238 0.8891 0.9564
BA 0.0037 0.0149 0.1075 0.3395 0.6235 0.8283
w 0.0594 0.1297 0.3240 0.5513 0.7300 0.8489
LR 0.0493 0.2481 0.6639 0.9147 0.9822 0.9969
FC 0.0480 0.1723 0.4250 0.5793 0.6365 0.6561
LC 0.0483 0.1826 0.5300 0.8157 0.9414 0.9826
TC (15,20,25) 0.0488 0.1995 0.5765 0.8660 0.9665 0.9929
THA 0.0511 0.1951 0.5776 0.8739 0.9714 0.9955
BA 0.0030 0.0242 0.1969 0.5608 0.8539 0.9639
w 0.0556 0.1717 0.4587 0.7290 0.8913 0.9595

LR = likelihood ratio; FC = Fisher combination; LC = Liptak combination; TC = Tippett combination; THA = Tippett and
Hartley test; BA = Bartlett statistic; W = Levene test statistic.

mean or location parameters. The reason for this may come from the deficiency of demands in the
application aspect. However it cannot be denied either that the distributions of the LR functions
and related statistics have not been fully developed until now. This phenomenon already has been
confirmed by Park (2018) for the study of testing procedure for the covariance matrix even for the
one-sample problem. If we confess the difficulty for the derivation of the LR statistic, we have found
during the preliminary simulation study that the limiting distribution of 2log LR(c7, .. ., 0%; X) did
not work properly but just fail simply since the size of test could hardly been achieved for any given
nominal significance level. This should have been found by Bartlett (1937) since he proposed the
modified form, BA of 2 log LR(o-f, o, 0'3(; X) to be adjusted for the chi-square distribution with K —1
df, which was successful for normal distribution but not for the others. Even though our approach
cannot be called as a ground-breaking method, one should consider seriously adopting an alternative
approach. Therefore our results may be far from completion but can be a bridge to cross the unfinished
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battle ground for the tests of variance and/or scale parameters.

Nowadays the simultaneous test procedures for the mean and variance or location and scale pa-
rameters have appeared in the media of statistical journals frequently (Park, 2015, 2017). However the
lack of the results for the variance and scale parameters could be obstacles for this research. Therefore
one may take a privilege from this result to further ones research for simultaneous tests or the tests
among variances.
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