DOI QR코드

DOI QR Code

Development and evaluation of ANFIS-based conditional dam inflow prediction method using flow regime

ANFIS 기반의 유황별 조건부 댐 유입량 예측기법 개발 및 평가

  • Moon, Geon-Ho (Department of Civil & Environmental Engineering, Sejong University) ;
  • Kim, Seon-Ho (Department of Civil & Environmental Engineering, Sejong University) ;
  • Bae, Deg-Hyo (Department of Civil & Environmental Engineering, Sejong University)
  • 문건호 (세종대학교 건설환경공학과) ;
  • 김선호 (세종대학교 건설환경공학과) ;
  • 배덕효 (세종대학교 건설환경공학과)
  • Received : 2018.02.14
  • Accepted : 2018.04.17
  • Published : 2018.07.31

Abstract

Flow regime-based ANFIS Dam Inflow Prediction (FADIP) model is developed and compared with ANFIS Dam Inflow Prediction (ADIP) model in this study. The selected study area is the Chungju and Soyang multi-purpose dam watersheds in South Korea. The dam inflow, precipitation and monthly weather forecast information are used as input variables of the models. The training and validation periods of the models are 1987~2010 for Chungju and 1984~2010 for Soyang dam watershed. The testing periods for both watersheds are 2011~2016. The results of training and validation indicate that FADIP has better training ability than ADIP for predicting dam inflow in normal and low flow regimes. In the result of testing, ADIP shows low predictability of dam inflow in the low flow regime due to the model tuning on all flow regime together. However, FADIP demonstrates the improved accuracy over the entire period compared to ADIP, especially during the normal and low flow seasons. It is concluded that FADIP is valuable for the prediction of dam inflow in the case of drought years, and useful for water supply management of the multi-purpose dam.

본 연구에서는 ANFIS 기반의 유황별 댐 예측유입량 산정 기법(Flow regime-based ANFIS Dam Inflow Prediction, FADIP)을 개발하고, 이를 단순 ANFIS 기반 댐 예측유입량 산정 기법(ANFIS Dam Inflow Prediction, ADIP)과 비교 평가하였다. 대상유역은 국내 주요 다목적댐인 충주댐 유역과 소양강댐 유역을 선정하였으며, 입력자료로 댐 유입량, 강수량, 장기기상예보 자료를 사용하였다. 모델의 훈련 및 보정기간으로 충주댐 유역은 1987~2010년, 소양강댐 유역은 1984~2010년을 선정하였다. 검정기간은 두 유역 모두 2011~2016년을 활용하였다. 훈련 및 보정결과 FADIP는 ADIP에 비해 평수기, 저수기에 훈련이 개선되는 것으로 나타났다. 검정결과 ADIP는 통계모델의 학습방법 특성상 일반적인 사상에 학습이 이루어져, 저수기에 예측성이 떨어지는 것으로 나타났다. 반면 FADIP는 ADIP에 비해 전기간의 정확도가 향상되었으며, 특히 평수기와 저수기에 예측성이 우수하였다. 따라서 FADIP는 다목적댐 이수관리에 활용성이 높을 것으로 판단된다.

Keywords

References

  1. Awan, J. A., and Bae, D. H. (2014). "Improving ANFIS based model for long-term dam inflow prediction by incorporating monthly rainfall forecasts." Water Resources Management, Vol. 28, No. 5, pp. 1185-1199. https://doi.org/10.1007/s11269-014-0512-7
  2. Bacanli, U. G., Firat, M., and Dikbas, F. (2009). "Adaptive neurofuzzy inference system for drought forecasting." Stochastic Environmental Research and Risk Assessment, Vol. 23, pp. 1143-1154. https://doi.org/10.1007/s00477-008-0288-5
  3. Basheer, I. A., and Hajmeer, M. (2000). "Artificial neural networks: fundamentals, computing, design, and application." Journal of Microbiological Methods, Vol. 43, No. 1, pp. 3-31. https://doi.org/10.1016/S0167-7012(00)00201-3
  4. Chen, H., Guo, J., Xiong, W., Guo, S., and Xu, C.-Y. (2010). "Downscaling GCMs using the smooth support vector machine method to predict daily precipitation in the Hanjiang basin." Advances in Atmospheric Sciences, Vol. 27, pp. 274-284. https://doi.org/10.1007/s00376-009-8071-1
  5. Dahamsheh, A., and Aksoy, H. (2013). "Markov chain-incorporated artificial neural network models for forecasting monthly precipitation in arid regions." Arabian Journal for Science and Engineering, Vol. 39, No. 4, pp.2513-2524. https://doi.org/10.1007/s13369-013-0810-z
  6. Jain, A., and Kumar, A. M. (2007). "Hybrid neural network models for hydrologic time series forecasting." Applied Soft Computing, Vol. 7, No. 2, pp. 585-592. https://doi.org/10.1016/j.asoc.2006.03.002
  7. Jang, J. S. R. (1993). "ANFIS: Adaptive-network-based fuzzy inference system." IEEE Transactions on Systems, Man, and Cybernetics, Vol. 23, No. 3, pp. 665-685. https://doi.org/10.1109/21.256541
  8. Jang, J. S. R., Sun, C. T., and Mizutani, E. (1997). Neuro-fuzzy and soft computing: a computational approach to learning and machine intelligence. Prentice Hall, pp. 73-91.
  9. Madadgar, S., AghaKouchak, A., Shukla, S., Wood, A. W., Cheng, L., Hsu, K. L., and Svoboda, M. (2016). "A hybrid statisticaldynamical framework for meteorological drought prediction: Application to the southwestern United States." Water Resources Research, Vol. 52, No. 7, pp. 5095-5110. https://doi.org/10.1002/2015WR018547
  10. Mehr, A. D., Kahya, E., Şahin, A., and Nazemosadat, M. J. (2015). "Successive-station monthly streamflow prediction using different artificial neural network algorithms." International Journal of Environmental Science and Technology, Vol. 12, No. 7, pp. 2191-2200. https://doi.org/10.1007/s13762-014-0613-0
  11. Mitchell, T. M. (1997). Machine Learning. WCB/McGraw-Hill, Boston, M. A., pp. 108-112.
  12. Sanikhani, H., and Kisi, O. (2012). "River flow estimation and forecasting by using two different adaptive neuro-fuzzy approaches." Water Resources Management, Vol. 26, pp. 1715-1729. https://doi.org/10.1007/s11269-012-9982-7
  13. Shirmohammadi, B., Moradi, H., Moosavi, V., Semiromi, M. T., and Zeinali, A. (2013). "Forecasting of meteorological drought using Wavelet-ANFIS hybrid model for different time steps (case study: southeastern part of east Azerbaijan province, Iran)." Natural Hazards, Vol. 69, No. 1, pp. 389-402. https://doi.org/10.1007/s11069-013-0716-9
  14. Yaseen, Z. M., El-Shafie, A., Jaafar, O., Afan, H. A., and Sayl, K. N. (2015). "Artificial intelligence based models for stream-flow forecasting: 2000-2015." Journal of Hydrology, Vol. 530, pp. 829-844. https://doi.org/10.1016/j.jhydrol.2015.10.038