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ON CONFORMAL TRANSFORMATIONS BETWEEN

TWO ALMOST REGULAR (α, β)-METRICS

Guangzu Chen and Lihong Liu

Abstract. In this paper, we characterize the conformal transformations

between two almost regular (α, β)-metrics. Suppose that F is a non-

Riemannian (α, β)-metric and is conformally related to F̃ , that is, F̃ =

eκ(x)F , where κ := κ(x) is a scalar function on the manifold. We obtain
the necessary and sufficient conditions of the conformal transformation

between F and F̃ preserving the mean Landsberg curvature. Further,

when both F and F̃ are regular, the conformal transformation between
F and F̃ preserving the mean Landsberg curvature must be a homothety.

1. Introduction

In Finsler geometry, the Weyl theorem states that the projective and con-
formal properties of a Finsler space determine the metric properties uniquely
([14,16]). Therefore the conformal properties of a Finsler metric deserve extra
attention. The study of conformal geometry is a recent popular trend in Finsler
geometry. Let F and F̃ be two Finsler metrics on a manifold M . The confor-
mal transformation between F and F̃ is defined by L : F → F̃ , F̃ = eκ(x)F ,
where κ := κ(x) is a scalar function on M . We call such two metrics F and

F̃ are conformally related. A Finsler metric which is conformally related to a
Minkowski metric is called conformally flat Finsler metric.

In conformal geometry, it is one important problem how to characterise
conformally flat Finsler metrics. M. Hashuiguchi and Y. Ichijyō defined a con-
formally invariant linear connection in a Finsler space with an (α, β)-metric
and gave a condition that a Randers metric is conformally flat based on their
connection ([11]). Later, S. Kikuchi found a conformally invariant Finsler con-
nection and gave a necessary and sufficient condition for a Finsler metric to
be conformally flat by a system of partial differential equations under an extra
condition ([13]). But people are unable to know the local structure of con-
formal flat Finsler metrics by those results. In [12], L. Kang has proved that
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any conformally flat Randers metric of scalar flag curvature is projectively flat
and classified completely such metrics. The first author and X. Y. Cheng have
proved that, if a conformally flat (α, β)-metric F = αφ(β/α) on a manifold
M with the dimension n ≥ 3 is a weak Einstein metric, then it is either a
locally Minkowski metric or a Riemannian metric, where φ(s) is a polynomial
in s ([3]). They have also characterized conformally flat (α, β)-metrics with
isotropic S-curvature (See [3]). Further, the first author, Q. He and Z. Shen
prove that conformally flat (α, β)-metrics with constant flag curvature must be
either a locally Minkowski metric or a Riemannian metric ([5]). However, it
is unfortunate that the local structure of conformal flat Finsler metrics is still
unknown, even if conformal flat (α, β)-metrics.

There is the other important problem that, given a Finsler metric on a man-
ifold M , we would like to determine all Finsler metrics which are conformally
related to the given one. In [1], X. Y. Cheng and S. Bácsó characterized the
conformal transformations which preserve Riemann curvature, Ricci curvature,
(mean) Landsberg curvature and S-curvature respectively. In particular, they

proved that, if the conformal transformation F̃ (x, y) = eκ(x)F (x, y) preserves
the geodesics, then it must be a homothety, that is, κ =constant. Recently, the
first author, X. Cheng and Y. Zou characterize the conformal transformations
between two regular (α, β)-metrics. They prove that if both conformally related

(α, β)-metrics F and F̃ are Douglas metrics, then the conformal transformation
between them is a homothety ([4]).

The (α, β)-metrics are those Finsler metrics which are defined by a Riemann-

ian metric α =
√
aij(x)yiyj and a 1-form β = bi(x)yi on an n-dimensional

manifold M . They are expressed in the form

F = αφ(s), s = β/α,

where φ(s) is a C∞ positive function on (−b0, b0). It is known that F =
αφ(β/α) is a positive definite Finsler metric for any α and β with ‖β‖α < b0
if and only if φ satisfies the following ([2])

φ(s)− sφ′(s) + (b2 − s2)φ′′(s) > 0, |s| ≤ b < b0.

For the above function φ = φ(s), if we consider a 1-form β with ‖β‖α ≤ b0,
then F = αφ(β/α) might be singular at a point x with b(x) = b0. Such metrics
are called almost regular (α, β)-metrics.

In this paper, we are mainly concerned with the conformal transformations
between two almost regular (α, β)-metrics. In the following, we assume that

both F and F̃ are non-Riemannian. We can prove:

Theorem 1.1. Let F and F̃ be two conformally related almost regular non-
Riemannian (α, β)-metrics on a manifold M of dimension n ≥ 3. Let ∆ :=

1 + sQ+ (b2− s2)Q′ and Q := φ′/(φ− sφ′). Then both F and F̃ have the same
weak Landsberg curvature if and only if one of the following holds:
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(1) The conformal transformation between F and F̃ is a homothety, re-
gardless of the choice of a particular φ.

(2) The conformal factor κ(x) satisfies that κi(x) is proportional to bi(x),
where κi(x) := ∂κ

∂xi
(x) and φ satisfies

(1.1) (Q− sQ′){n∆ + 1 + sQ}+ (b2 − s2)(1 + sQ)Q′′ =
λ√

b2 − s2
∆

3
2 ,

where λ is a constant.

By Theorem 1.1, it is easy to obtain the following corollary.

Corollary 1.2. Let F and F̃ be two conformally related almost regular non-
Riemannian (α, β)-metrics on a manifold M of dimension n ≥ 3. Assume that

F is weak Landsberg metric. Then F̃ is also weak Landsberg metric if and only
if the following holds:

(1) The conformal transformation between F and F̃ is a homothety, re-
gardless of the choice of a particular φ.

(2) The conformal factor κ(x) satisfies that κi(x) is proportional to bi(x)
and φ satisfies (1.1).

Further, we also get:

Corollary 1.3. Let F be a conformally flat almost regular non-Riemannian
(α, β)-metrics on a manifold M of dimension n ≥ 3. Then F is weak Landsberg
metric if and only if the following holds:

(1) F is a locally Minkowski metric, regardless of the choice of a particular
φ.

(2) The conformal factor κ(x) satisfies that κi(x) is proportional to bi(x)
and φ satisfies (1.1).

2. Preliminaries

For a given Finsler F = F (x, y), the geodesics of F are characterized locally
by a system of 2nd ODEs as follows ([10]):

d2xi

dt2
+ 2Gi(x,

dx

dt
) = 0,

where

Gi =
1

4
gil
{

[F 2]xmyly
m − [F 2]xl

}
,

and gij := 1
2 [F 2]yiyj . Gi are called the geodesic coefficients of F .

There are many interesting quantities in Finsler geometry which vanish in
Riemann geometry. We call them non-Riemannian quantities. For a non-zero
vector y ∈ TpM , the Cartan torsion Cy = Cijkdx

i⊗dxj⊗dxk : TpM ⊗TpM ⊗
TpM −→ R is defined by

Cijk :=
1

4
[F 2]yiyjyk =

1

2

∂gij
∂yk

(x, y).
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The mean Cartan torsion Iy = Ii(x, y)dxi : TpM −→ R is defined by

Ii := gjkCijk,

where (gij) := (gij)
−1. It is obvious that Cijk = 0 if and only if F is Riemann-

ian. According to Deicke’s theorem ([17]), a Finsler metric is Riemannian if
and only if the mean Cartan torsion vanishes.

The Landsberg curvature L := Lijkdx
i⊗dxj⊗dxk and the mean Landsberg

curvature J := Jidx
i are defined respectively by

Lijk := −1

2
FFym

∂Gm

∂yiyjyk
, Ji := gjkLijk.

Finsler metrics with (J = 0)L = 0 are called (weak)Landsberg metrics.
Let

rij :=
1

2
(bi|j + bj|i), sij :=

1

2
(bi|j − bj|i),

bi := aijbj , si := bjsji, s
i
j := ailslj , ri := blrli,

s0 := siy
i, si0 := sijy

j , r00 := rijy
iyj ,

where “|” denotes the horizontal covariant derivative with respect to α. Con-
sider (α, β)-metrics F = αφ(s), s = β/α on a manifold. Let Gi and Giα denote
the spray coefficients of F and α, respectively, then we have [10]

(2.1) Gi = Giα + αQsi0 + {−2Qαs0 + r00}{Ψbi + Θα−1yi},
where

(2.2) Q :=
φ′

φ− sφ′
, Θ :=

Q− sQ′

2∆
, Ψ :=

Q′

2∆
.

Put
yi := aijy

j , hi := αbi − syi,
Φ := −(Q− sQ′){n∆ + 1 + sQ} − (b2 − s2)(1 + sQ)Q′′,

Ψ1 :=
√
b2 − s2∆

1
2 [

√
b2 − s2Φ

∆
3
2

]′, Ψ2 := 2(n+ 1)(Q− sQ′) + 3
Φ

∆
.

By a direct computation, we obtain the following formula about the mean
Cartan torsion of (α, β)-metrics [9]

(2.3) Ii := −Φ(φ− sφ′)
2∆φα2

hi.

By Deicke’s theorem, an (α, β)-metric is Riemannian if and only if Φ ≡ 0.
Further, the mean Landsberg curvature of an (α, β)-metric is given by [15]

Ji = − 1

2∆α4
{ 2α2

b2 − s2
[
Φ

∆
+ (n+ 1)(Q− sQ′)](r0 + s0)hi

+
α

b2 − s2
[Ψ1 + s

Φ

∆
](r00−2αQs0)hi + α[−αQ′s0hi + αQ(α2si − yis0)

+ α2∆si0 + α2(ri0 − 2αQsi)− (r00 − 2αQs0)yi]
Φ

∆
}.(2.4)
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Contracting Ji with bi, we obtain

(2.5) J̄ := Jib
i = − 1

2∆α2
{Ψ1(r00 − 2αQs0) + αΨ2(r0 + s0)}.

3. The proof of Theorem 1.1

Let F = αφ(s), s = β/α be an (α, β)-metric on a manifold M , where α =√
aij(x)yiyj is a Riemannian metric and β = bi(x)yi is a 1-form on M . Assume

that F̃ is conformally related to F on M , F̃ = eκ(x)F . It is easy to see that
F̃ = α̃φ(β̃/α̃) is also an (α, β)-metric, where α̃ = eκ(x)α, β̃ = eκ(x)β. Write

α̃ =
√
ãij(x)yiyj , β̃ = b̃i(x)yi. Then ãij = e2κ(x)aij , b̃i = eκ(x)bi. Further, we

have ([8])

(3.1) b̃j||k = eκ(x)
(
bj|k − bkκj + fajk

)
.

Here b̃j||k denote the covariant derivative of b̃j with respect to α̃ and f := κmb
m.

In the following, we always use symbols with tilde and corresponding indices
to denote the corresponding quantities of the metric F̃ . First, we have:

Proposition 3.1. Let F and F̃ be two conformally related almost regular
(α, β)-metrics on a manifold M of dimension n ≥ 3. If F and F̃ have the
same weak Landsberg curvature, then the conformal transformation between F
and F̃ is a homothety or φ satisfies (1.1).

Proof. By (2.5), we have

(3.2) ¯̃J := J̃ib̃
i = − 1

2∆α̃2
{Ψ1(r̃00 − 2α̃Qs̃0) + α̃Ψ2(r̃0 + s̃0)}.

It follows from (3.1) that

r̃ij = eκ(x)[rij −
1

2
(κibj + κjbi) + faij ]

s̃ij = eκ(x)[sij −
1

2
(κibj − κjbi)]

r̃i = ri −
1

2
(b2κi − fbi)

s̃i = si −
1

2
(fbi − b2κi).(3.3)

Using (3.3), by a direction computation, it is easy to obtain that

eκ(x) ¯̃J − J̄ = − Ψ1

2∆α2
[αf(1 + sQ)− (s+ b2Q)κ0],

where κ0 := κiy
i. By assumption, we have ¯̃J = J̃ib̃

i = Jib̃
i = e−κ(x)Jib

i =
e−κ(x)J̄ . Thus one has

(3.4) Ψ1[αf(1 + sQ)− (s+ b2Q)κ0] = 0.
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It is obvious that Ψ1 = 0 from (3.4), i.e., φ satisfies (1.1), or

(3.5) αf(1 + sQ)− (s+ b2Q)κ0 = 0.

In the next step, we prove that the conformal transformation between F and
F̃ is a homothety by (3.5). To simplify the computations, take an orthonormal
basis at x with respect to α such that

α =

√√√√ n∑
i=1

(yi)2, β = by1.

Further, we take the following coordinate transformation ([7]) in TxM , ψ :
(s, uA)→ (yi):

y1 =
s√

b2 − s2
ᾱ, yA = uA,

where ᾱ =
√∑n

i=2(uA)2. Here, our index conventions are

1 ≤ i, j, k, . . . ≤ n, 2 ≤ A,B,C, . . . ≤ n.
We have

α =
b√

b2 − s2
ᾱ, β =

bs√
b2 − s2

ᾱ.

Then, from (3.5), we have

(3.6)
b2ᾱ√
b2 − s2

(1 + sQ)κ1 − (s+ b2Q)(
sᾱ√
b2 − s2

κ1 + κ̄0) = 0.

The above equation is equivalent to the following two equations.

(3.7) (b2 − s2)κ1 = 0,

(3.8) (s+ b2Q)κA = 0.

If s + b2Q = 0, we can easily get φ(s) = a0
√
b2 − s2, where a0 is a constant.

In this case, it is clear that φ − sφ′ + (b2 − s2)φ′′ = 0. Then (α, β)-metric F
is not a positive definite Finsler metric. Thus (3.8) implies κA = 0. By (3.7),
one has κ1 = 0. Hence κi = 0, i.e., the conformal transformation between F
and F̃ is a homothety. �

Further, we have:

Proposition 3.2. Let F and F̃ be two conformally related almost regular
(α, β)-metrics on a manifold M of dimension n ≥ 3. If F and F̃ have the
same weak Landsberg curvature and φ satisfies (1.1), then the conformal factor
κ(x) satisfies that κi(x) is proportional to bi(x).

Proof. From (2.4) and (3.3), by a series of direct computations, we have

Ji − J̃i = − 1

2∆α4
{ α

b2 − s2
[Ψ1 + s

Φ

∆
][fα2 − βκ0 + αQ(fβ − b2κ0)]hi

+ α[
1

2
αQ′(fβ − b2κ0)hi −

1

2
α3Q(fbi − b2κi) +

1

2
αQ(fβ
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− b2κ0)yi −
1

2
α2∆(κiβ − biκ0)− 1

2
α2(κiβ + biκ0) + α3Q(fbi

− b2κi) + κ0βyi − αQ(fβ − b2κ0)yi]
Φ

∆
}.(3.9)

By assumption and (3.9), one can obtain

0 =
s

b2 − s2
[fα2 − βκ0 + αQ(fβ − b2κ0)]hi +

1

2
αQ′(fβ − b2κ0)hi

− 1

2
α3Q(fbi − b2κi)−

1

2
α2∆(κiβ − biκ0)− 1

2
α2(κiβ + biκ0)

+ α3Q(fbi − b2κi) + κ0βyi −
1

2
αQ(fβ − b2κ0)yi.(3.10)

(3.10)×(b2 − s2) yields

0 = − 1

2
α2(s+ s∆ + b2Q)(b2 − s2)κi + αbi{s[αf(1 + sQ)− (s+ b2Q)κ0]

+ (b2−s2)
Q′

2
(αfs−b2κ0) +

∆

2
κ0(b2−s2) +

1

2
(αfQ− κ0)(b2 − s2)}

+ yi{(b2 − s2)[κ0s−
Q

2
(αfs− b2κ0)]− (b2 − s2)

Q′

2
s(αfs− b2κ0)

− s2[αf(1 + sQ)− (s+ b2Q)κ0]}.(3.11)

Simplifying further, we get

0 = − 1

2
α2(s+ s∆ + b2Q)(b2 − s2)κi + αbi{αf [s(1 + sQ)

+
1

2
sQ′(b2 − s2) +

1

2
Q(b2 − s2)] + κ0[

∆

2
(b2 − s2)− 1

2
Q′b2(b2 − s2)

− s(s+ b2Q)− 1

2
(b2 − s2)]}+ yi{κ0[(b2 − s2)(s+

b2

2
Q)

+ (b2 − s2)
Q′

2
sb2 + s2(s+ b2Q)]− αf [(b2 − s2)

1

2
sQ

+ (b2 − s2)
Q′

2
s2 + s2(1 + sQ)]}.(3.12)

Let

M1 : = −1

2
(s+ s∆ + b2Q)(b2 − s2),

M2 : = s(1 + sQ) +
1

2
sQ′(b2 − s2) +

1

2
Q(b2 − s2),

M3 : =
∆

2
(b2 − s2)− 1

2
Q′b2(b2 − s2)− s(s+ b2Q)− 1

2
(b2 − s2),

M4 : = (b2 − s2)(s+
b2

2
Q) + (b2 − s2)

Q′

2
sb2 + s2(s+ b2Q),

M5 : = (b2 − s2)
1

2
sQ+ (b2 − s2)

Q′

2
s2 + s2(1 + sQ).(3.13)
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Noting that the expression of ∆, by a direction computation, it is surprising
that M1 = −M(b2− s2), M2 = M, M3 = −sM, M4 = b2M, M5 = sM, where

M := s+
1

2
sQ′(b2 − s2) +

1

2
Q(b2 + s2).

Then (3.12) can be reduced to

(3.14) M{(b2 − s2)α2κi − αbi(αf − sκ0) + yi(αfs− κ0b2)} = 0.

We claim M 6= 0. Suppose that M = 0, we get the solution of ordinary
differential equation M = 0,

Q =
k(b2 − s2)− 1

s
,

where k is a number independent of s. Then we have 1 + sQ = k(b2 − s2), i.e.,

φ

φ− sφ′
= k(b2 − s2).

Taking s = 0 in above equation, we get k = 1/b2. Then the above equation
becomes

(3.15)
φ

φ− sφ′
=

1

b2
(b2 − s2)

which implies φ = a1
√
b2 − s2, where a1 is a number independent of s. It

contradicts that F is a positive definite Finsler metric. Thus M 6= 0.
By (3.14), we have

(3.16) (b2 − s2)α2κi − αbi(αf − sκ0) + yi(αfs− κ0b2) = 0.

Then we can obtain

(3.17) α2(fbi − b2κi) + β2κi − βκ0bi + b2κ0yi − βfyi = 0.

Differentiating (3.17) with respect to yj yields

(3.18)
2yj(fbi − b2κi) + 2βκibj − κ0bibj − βbiκj + aijb

2κ0

+ yib
2κj − βfaij − fyibj = 0.

Contracting (3.18) with aij yields

(3.19) (n− 2)(b2κ0 − βf) = 0.

Thus the conformal factor κ(x) satisfies that κi(x) is proportional to bi(x), i.e.,
κi(x) = lbi(x), where l := l(x) is a scalar function on manifold M . �
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4. The regular case

In this section, we consider the regular (α, β)-metrics. Firstly, we have:

Lemma 4.1. Let F = αφ(s) be a regular (α, β)-metric on a manifold M . If
φ(s) satisfies (1.1), then F is Riemannian.

Proof. Because F is a positive definite Finsler metric, noting that the expres-
sion of ∆, we have

(4.1) ∆ =
φ[φ− sφ′ + (b2 − s2)φ′′]

(φ− sφ′)2
> 0.

By (1.1), one obtains

Φ
√
b2 − s2 = −λ∆

3
2 .

Let s = b in above equation and by (4.1), it is obvious that λ = 0. Thus we get
Φ = 0. Then (2.3) implies F is Riemannian. �

Further, by Theorem 1.1, we have:

Theorem 4.2. Let F and F̃ be two conformally related regular (α, β)-metrics

on a manifold M of dimension n ≥ 3. Then both F and F̃ have the same weak
Landsberg curvature if and only if the conformal transformation between F and
F̃ is a homothety.

It is easy to obtain the following corollary from Theorem 4.2.

Corollary 4.3. Let F and F̃ be two conformally related regular (α, β)-metrics
on a manifold M of dimension n ≥ 3. Assume that F is weak Landsberg
metric. Then F̃ is also weak Landsberg metric if and only if the conformal
transformation between F and F̃ is a homothety.

Finally, we also get:

Corollary 4.4. Let F be a conformally flat regular (α, β)-metrics on a man-
ifold M of dimension n ≥ 3. If F is weak Landsberg metric, it is a locally
Minkowski metric or Riemannian.

Corollary 4.4 is just the main theorem in [6].
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