NOTE ON THE DECOMPOSITION OF STATES

Donghoon Hyeon and Jaekwang Kim

Abstract

We derive a sharp decomposition formula for the state polytope of the Hilbert point and the Hilbert-Mumford index of reducible varieties by using the decomposition of characters and basic convex geometry. This proof captures the essence of the decomposition of the state polytopes in general, and considerably simplifies an earlier proof by the authors which uses a careful analysis of initial ideals of reducible varieties

1. Introduction and preliminaries

In this article, we take a new look at the decomposition formula for state polytopes [2] from a more general point of view. We shall work over an algebraically closed field k of characteristic zero. Let G be a linear algebraic group and R be a maximal torus of it. Let W be a rational representation of G and $w \in W$ be a point. Recall that the state $\Xi_{w}(R)$ of w with respect to R is the set of the characters $\chi \in X(R)$ such that $w_{\chi} \neq 0$. Since $w=\sum_{\chi} w_{\chi}$ implies $c w=\sum_{\chi} c w_{\chi}$, we have $\Xi_{w}(R)=\Xi_{c w}(R)$ for any nonzero $c \in k$. Hence we may define the state $\Xi_{p}(R)$ of $p \in \mathbb{P}(W)$ to be $\Xi_{w}(R)$ for any affine point $w \in W$ over p. (We conflate a vector space W with the affine scheme $\operatorname{Spec} \operatorname{Sym}\left(W^{*}\right)$.)

We shall be concerned with the states of Hilbert points of homogeneous ideals. Let V be an $(n+1)$ dimensional k-module and S be the symmetric algebra of the dual vector space V^{*}. Choose coordinates x_{0}, \ldots, x_{n} and identify S with $k\left[x_{0}, \ldots, x_{n}\right]$. Let $P(u)$ be a rational polynomial in one variable u and $Q(u)=\binom{u+n}{n}-P(u)$. If m is at least the Gotzmann number of $P(u)$, then for any saturated homogeneous polynomial $I \subset k\left[x_{0}, \ldots, x_{n}\right]$ whose Hilbert

Received August 8, 2017; Revised March 6, 2018; Accepted March 13, 2018
2010 Mathematics Subject Classification. 14L24.
Key words and phrases. geometric invariant theory, state polytope.
The first named author was supported by the National Research Foundation of Korea(NRF) Grant No.2017R1A5A1015626 funded by the government of Korea. The authors thank the anonymous referee for pointing out inaccuracies and making suggestions for improving the article.
polynomial is P, the m th Hilbert point $[I]_{m}$ of I is well defined as a $Q(m)$ dimensional subspace of the degree m piece S_{m} :

$$
[I]_{m}:\left[I_{m} \hookrightarrow S_{m}\right] \in \operatorname{Gr}_{Q(m)} S_{m} \hookrightarrow \mathbb{P}\left(\bigwedge^{Q(m)} S_{m}\right)
$$

The dual mth Hilbert point $[I]_{m}^{*}$ is defined as

$$
[I]_{m}^{*}:\left[S_{m} \rightarrow S_{m} / I_{m}\right] \in \operatorname{Gr}^{P(m)} S_{m} \hookrightarrow \mathbb{P}\left(\bigwedge^{P(m)} S_{m}^{*}\right)
$$

If $X \subset \mathbb{P}(V)$ is the projective scheme defined by a homogeneous ideal I_{X}, then we shall abuse notation and conflate $\mu\left([X]_{m}, \rho\right)$ with $\mu\left(\left[I_{X}\right]_{m}, \rho\right)$. We shall also abuse the notations for the dual Hilbert points. The collection of m th Hilbert points form a closed subscheme $\operatorname{Hilb}_{P} \mathbb{P}(V)$, called the Hilbert scheme, of the Grassmannian. Working out the geometric invariant theory (GIT) of suitable Hilbert schemes give rise to various moduli spaces [4], and our main motivation for the study in this article is the construction of the moduli of curves. The link between GIT and the study of state polytopes is given by the following fundamental observation (numerical criterion): If G is reductive and V is a rational representation, $v \in V$ is GIT unstable if and only if there is a torus R of G such that the convex hull of $\Xi_{v}(R)$ does not contain the trivial character.

The monomial basis of $\bigwedge^{Q(m)} S_{m}$ consists of $x^{\alpha}:=x^{\alpha(1)} \wedge \cdots \wedge x^{\alpha(Q(m))}$, the wedge product of $Q(m)$ degree m monomials $x^{\alpha(i)}$'s. The basis members are also the R-weight vectors of $\bigwedge^{Q(m)} S_{m}$, where R is the maximal torus of $G=G L\left(S_{1}\right)$ diagonalized by x_{0}, \ldots, x_{n} : Indeed, let χ_{i} be the character of R determined by $t . x_{i}=\chi_{i}(t) x_{i}$. Then by letting t_{i} denote $\chi_{i}(t)$ and using the usual multivector notation $t^{\gamma}=\prod_{i=0}^{n} t_{i}^{\gamma_{i}}$, $t \in T, \gamma \in \mathbb{Z}^{n+1}$, we have $t . x^{\alpha}=t^{\sum_{i=1}^{Q(m)} \alpha(i)} x^{\alpha}$, which means precisely that $\left(\bigwedge^{Q(m)} S_{m}\right)_{\chi^{\alpha}}=k \cdot x^{\alpha}$ where $\chi^{\alpha}=\prod_{i=1}^{Q(m)} \prod_{j=0}^{n} \chi_{j}^{\alpha(i)_{j}}$.

The Hilbert point $[I]_{m}$ has a nonzero x^{α}-coefficient if and only if the degree m monomials other than $x^{\alpha(1)}, \ldots, x^{\alpha(Q(m))}$ form a k-basis of S_{m} / I_{m}. Following [3], we denote the set of states by $\Xi_{[I]_{m}}(R)$ and its convex hull by $\mathcal{P}_{m}(I)$. We call $\mathcal{P}_{m}(I)$ the m th state polytope of I, following [1].

For any fixed sufficiently large m, Bayer and Morrison proved that:
Theorem 1.1 ([1, Theorem 3.1]). There is a canonical bijection between the vertices of $\mathcal{P}_{m}(I)$ and the initial ideals $\mathrm{in}_{\prec}(I)$ as \prec runs through all term orders on $k\left[x_{0}, \ldots, x_{n}\right]$.

Using the Bayer-Morrison theorem and basic properties of monomial orders and initial ideals, decomposition formulae for initial ideals, state polytopes, and Hilbert-Mumford indices were obtained in [2]:

Theorem 1.2 ([2]). Let X be a chain of projective varieties X_{1}, \ldots, X_{ℓ} defined by a saturated homogeneous ideal $I_{X}=\cap_{i} I_{X_{i}}$, i.e., $X=\cup_{i=1}^{\ell} X_{i}$ and X_{i} meets X_{j} when and only when $|i-j|=1$. Suppose that there is a homogeneous coordinate system x_{0}, \ldots, x_{n} and a sequence $n_{0}=0<n_{1}<\cdots<n_{\ell}=n$ such that

$$
X_{i} \subset\left\{x_{0}=\cdots=x_{n_{i-1}-1}=0, x_{n_{i}+1}=x_{n_{i}+2}=\cdots=x_{n}=0\right\}
$$

Then the state polytope of X is given by the following decomposition formula

$$
\begin{equation*}
\mathcal{P}_{m}\left(I_{X}\right)=\sum_{i=1}^{\ell} \mathcal{P}_{m}\left(I_{X_{i}} \cap k\left[x_{n_{i-1}}, \ldots, x_{n_{i}}\right]\right)+\sum_{i=1}^{\ell-1} \mathcal{P}_{m}\left(T_{i} \cap k\left[x_{n_{i-1}}, \ldots, x_{n}\right]\right) \tag{1}
\end{equation*}
$$

where $T_{i}=\left\langle x_{n_{i-2}}, \ldots, x_{n_{i-1}-1}\right\rangle\left\langle x_{n_{i}+1}, \ldots, x_{n}\right\rangle$ for $2 \leq i \leq \ell-1$, and $T_{1}=$ $\left\langle x_{n_{1}+1}, x_{n_{1}+2}, \ldots, x_{n}\right\rangle$ and $T_{\ell}=\left\langle x_{n_{\ell-2}}, x_{n_{\ell-2}+1}, \ldots, x_{n_{\ell-1}-1}\right\rangle$.

Here, $\mathcal{P}_{m}\left(I_{X_{i}} \cap k\left[x_{n_{i-1}}, \ldots, x_{n_{i}}\right]\right)$ is regarded as a convex polytope in the subspace $\left\{\mathbf{a} \in \mathbb{R}^{n+1} \mid a_{j}=0, \forall j<n_{i-1}, \forall j>n_{i}\right\}$.

Similarly, $\mathcal{P}_{m}\left(T_{i} \cap k\left[x_{n_{i-1}}, \ldots, x_{n}\right]\right)$ is also regarded as a convex polytope in the relevant vector subspace. Note that $\mathcal{P}_{m}\left(T_{i} \cap k\left[x_{n_{i-1}}, \ldots, x_{n}\right]\right)$ is a point since T_{i} is a monomial ideal. We let τ denote the point $\sum_{i=1}^{\ell-1} \mathcal{P}_{m}\left(T_{i} \cap\right.$ $\left.k\left[x_{n_{i-1}}, \ldots, x_{n}\right]\right)$. We shall show in Section 2.1 that Theorem 1.2 is a consequence of the fact that the characters of a direct sum are the sums of the characters of the direct summands (Proposition 2.1).

It is also shown in [2] that this decomposition is sharp: the vertices of $\mathcal{P}_{m}\left(I_{X}\right)$ are precisely the sums of vertices of $\mathcal{P}_{m}\left(I_{X_{i}} \cap k\left[x_{n_{i-1}}, \ldots, x_{n_{i}}\right]\right)$ and τ (Corollary 2.4). The proof in [2] uses Theorem 1.1 and the initial ideal decomposition formula. We shall show in Section 2.2 that the sharpness of the decomposition is in fact a consequence of a general convex geometry phenomenon.

Finally, we also reprove in Section 3 the Hilbert-Mumford index decomposition formula below by using the decomposition of characters.

Proposition 1.3 ([2]). Let X be as in Theorem 1.2 and $\rho: \mathbb{G}_{m} \rightarrow G L_{n+1}$ be a 1-parameter subgroup of $G L_{n+1}$ diagonalized by $\left\{x_{0}, \ldots, x_{n}\right\}$ with weights $\left(r_{0}, \ldots, r_{n}\right)$ and ρ_{i} be the restriction of ρ to $G L\left(k x_{n_{i-1}}+\cdots+k x_{n_{i}}\right)$. Then the Hilbert-Mumford index $\mu\left([X]_{m}^{*}, \rho\right)$ of the (dual) mth Hilbert point of X with respect to ρ is given by

$$
\begin{aligned}
\mu\left([X]_{m}^{*}, \rho\right)= & \sum_{i=1}^{\ell} \mu\left(\left[X_{i}\right]_{m}^{*}, \rho_{i}\right)-\sum_{i=1}^{\ell}\left(\frac{m P_{i}(m)}{n_{i}-n_{i-1}+1} \sum_{k=n_{i-1}}^{n_{i}} r_{k}\right) \\
& +\frac{m P(m)}{n+1} \sum_{i=0}^{n} r_{i}+m \sum_{i=1}^{\ell-1} r_{n_{i}}
\end{aligned}
$$

where $P(m)$ is the Hilbert polynomial of $I_{X} \subset k\left[x_{0}, \ldots, x_{n}\right]$ and $P_{i}(m)$, the Hilbert polynomial of $I_{X_{i}} \cap k\left[x_{n_{i-1}}, \ldots, x_{n_{i}}\right]$ regarded as an ideal in $k\left[x_{n_{i-1}}, \ldots, x_{n_{i}}\right]$.

We close this section with an observation that will be used in Section 3:
Lemma 1.4. Retain the notations from above. Then $\mu\left([X]_{m}^{*}, \rho\right)=\mu\left([X]_{m}, \rho\right)$. That is, the Hilbert-Mumford index of $[X]_{m}$ and that of the dual Hilbert point $[X]_{m}^{*}$ are exactly the same.
Proof. Let ρ be a one-parameter subgroup of $S L\left(S_{1}\right)$. We recall the fact that $\lim _{t \rightarrow 0} \rho(t) \cdot\left[I_{X}\right]_{m}=\left[\operatorname{in} \prec_{\rho} I_{X}\right]_{m}$ where \prec_{ρ} is the ρ-weight order with the reverse lexicographic tie-breaking [1]. Then the Hilbert-Mumford index is

$$
\mu\left(\left[I_{X}\right]_{m}, \rho\right)=\mu\left(\left[\mathbf{i n}_{\prec_{\rho}} I_{X}\right]_{m}, \rho\right)=-\sum_{x^{\alpha} \in\left(\mathbf{i n}_{\prec_{\rho}} I_{X}\right)_{m}} \operatorname{wt}_{\rho}\left(x^{\alpha}\right)
$$

Let $\left\{f_{0}, \ldots, f_{n}\right\} \subset S_{1}^{*}$ be the dual basis of $\left\{x_{0}, \ldots, x_{n}\right\} \subset S_{1}$. Use the multi-vector notation $f^{\alpha}=\prod_{i=0}^{n} f_{i}^{\alpha_{i}}$. Then $f^{\alpha(1)} \wedge \cdots \wedge f^{\alpha(P(m))}$ appears in $\bigwedge^{P(m)}\left(S / I_{X}\right)_{m}^{*}$ with a nonzero Plücker co-ordinate if and only if $x^{\alpha(1)}, \ldots$, $x^{\alpha(P(m))}$ form a basis of $\left(S / I_{X}\right)_{m}$. Since ρ is a co-character of the special linear group, the weights of all monomials of S_{m} sum up to zero. Also, ρ acts on $\mathbb{P}\left(\bigwedge S_{m}\right)$ and $\mathbb{P}\left(\bigwedge S_{m}^{*}\right)$ with opposite weights. Hence we have

$$
\begin{aligned}
\mu\left(\left[I_{X}\right]_{m}^{*}, \rho\right) & =\max \left\{-\sum_{x^{\alpha} \in \mathcal{B}} \mathrm{wt}_{\rho}\left(f^{\alpha}\right) \mid \mathcal{B} \text { a monomial basis of }\left(S / I_{X}\right)_{m}\right\} \\
& =-\sum_{x^{\alpha} \in S_{m} \backslash \text { in }_{\prec_{\rho}\left(I_{X}\right)}}\left(-\mathrm{wt}_{\rho}\left(x^{\alpha}\right)\right)=-\sum_{x^{\alpha} \in\left(\mathbf{i n}_{\left.\prec_{\rho}\left(I_{X}\right)\right)_{m}} \mathrm{wt}_{\rho}\left(x^{\alpha}\right) .\right.}
\end{aligned}
$$

2. Decomposition of states

Let $G=G L(V)$ and let $V_{i}, i=1, \ldots, \nu$, be vector subspaces of V that span V. Note that $V=\sum_{i=1}^{\nu} V_{i}$ is not necessarily a direct sum. Then

$$
S^{m} V=\sum_{i=1}^{\nu} S^{m} V_{i}+\sum_{\substack{\sum_{j} \\ 0<m_{j}=m \\ 0<m_{j}<m}} \bigotimes_{j=1}^{\nu} S^{m_{j}} V_{j}
$$

For a notational convenience, we let W denote $S^{m} V, W_{j}=S^{m} V_{j}$ for $1 \leq j \leq \nu$ and

$$
W_{\nu+1}=\sum_{\substack{\sum_{j} m_{j}=m \\ 0<m_{j}<m}} \bigotimes_{j=1}^{\nu} S^{m_{j}} V_{j} .
$$

Let R be a maximal torus of $G L(V)$ which preserves the subspaces V_{i}. Then one can choose a basis of $\mathcal{B}=\left\{v_{1}, \ldots, v_{M}\right\}$ of V diagonalizing the R-action such that V_{j} is the linear subspace spanned by $\left\{v_{M_{j}}, v_{M_{j}+1}, \ldots, v_{M_{j}^{\prime}}\right\}$. We identify $G L\left(V_{j}\right)$ with the subgroup of $G L(V)$ which preserves V_{j} and acts trivially on $\operatorname{Span}\left\{v_{i} \mid i<M_{j}, i>M_{j}^{\prime}\right\}$.

Let χ_{i} be the character of R determined by $t . v_{i}=\chi_{i}(t) v_{i}$. Set $R_{j}=R \cap$ $G L\left(V_{j}\right)$. Then there is a natural projection $\pi_{j}: R \rightarrow R_{j}$ defined by

$$
\chi_{s}\left(\pi_{j}(t)\right)= \begin{cases}\chi_{s}(t), & M_{j} \leq s \leq M_{j}^{\prime} \\ 1, & \text { else }\end{cases}
$$

Then π_{j} 's induce injective group homomorphisms $\pi_{j}^{*}: X\left(R_{j}\right) \hookrightarrow X(R)$. We shall identify $X\left(R_{j}\right)$ with its image in $X(R)$ under π_{j}^{*}.
Proposition 2.1. Let I be a subspace of $W, I_{j}=I \cap W_{j}$, and suppose that the sum $I=\sum_{j=1}^{\nu+1} I_{j}$ is direct. Let $\operatorname{dim} I=N$ and $\operatorname{dim} I_{j}=N_{j}, 1 \leq j \leq \nu+1$. We have the decomposition of states

$$
\Xi_{\left[\Lambda^{N} I\right]}(R)=\sum_{j=1}^{\nu} \Xi_{\left[\wedge^{\left.N_{j} I_{j}\right]}\right.}\left(R_{j}\right)+\Xi_{\left[\wedge^{N_{\nu+1}} I_{\nu+1}\right]}(R)
$$

Proof. Let ξ be an affine point over $\left[\bigwedge^{N} I\right] \in \mathbb{P}\left(\bigwedge^{N} S^{m} V\right)$, and let ξ_{j} be an affine point over $\left[\bigwedge^{N_{j}} I_{j}\right]$ in $\bigwedge^{N_{j}} W_{j}$. The affine point ξ_{j} generates the one-dimensional subspace $\bigwedge^{N_{j}} I_{j}$. Let $j \leq \nu$. Consider the R-weight decomposition of ξ_{j}. Since I_{j} is contained in the R-module $W_{j}=S^{m} V_{j}$, the R-weight decomposition of ξ_{j} is precisely the R_{j}-weight decomposition, i.e.,

$$
\xi_{j}=\sum_{\chi \in X(R)}\left(\xi_{j}\right)_{\chi}=\sum_{\chi \in X\left(R_{j}\right)}\left(\xi_{j}\right)_{\chi}
$$

Since the sum $I=\sum_{j=1}^{\nu+1} I_{j}$ is direct, we have

$$
\bigwedge_{N}^{N} I \simeq \bigotimes_{j=1}^{\nu+1}\left(\bigwedge^{N_{j}} I_{j}\right)
$$

and hence the R-weight decomposition of ξ is given as

$$
\begin{equation*}
\xi=\sum_{\substack{\chi^{(j)} \in X\left(R_{j}\right) \\ \chi^{\nu+1} \in X(R)}} \bigotimes_{j=1}^{\nu+1}\left(\xi_{j}\right)_{\chi^{(j)}} \tag{2}
\end{equation*}
$$

The summand $\bigotimes_{j=1}^{\nu+1}\left(\xi_{j}\right)_{\chi^{(j)}}$ has a weight $\sum_{j=1}^{\nu+1} \chi^{(j)} \in X(R)$ and it is a state of ξ if and only if the weight vector $\sum_{j=1}^{\nu+1}\left(\xi_{j}\right)_{\chi^{(j)}}$ is nonzero if and only if $\chi^{(j)}$ is a state of $\xi_{j}, \forall j$. It follows that every state of ξ is a sum of states of ξ_{j} 's and vice versa.

2.1. Proof of Theorem 1.2

We shall now deduce Theorem 1.2 from Proposition 2.1. Let $X=X_{1} \cup$ $X_{2} \subset \mathbb{P}\left(V^{*}\right)$ be a chain of subvarieties X_{i} and suppose that there exists a
homogeneous coordinate system $x_{0}, \ldots, x_{n_{1}}, \ldots, x_{n} \in V$ such that

$$
\begin{align*}
& X_{1} \subset\left\{x_{n_{1}+1}=\cdots=x_{n}=0\right\}, \\
& X_{2} \subset\left\{x_{0}=\cdots=x_{n_{1}-1}=0\right\} .
\end{align*}
$$

We also assume that $X_{1} \cap X_{2} \neq \emptyset$, and that X, X_{1}, X_{2} are cut out by saturated homogeneous ideals $I_{X_{i}}$ and $I_{X}=I_{X_{1}} \cap I_{X_{2}}$.

Let V_{1} (resp. V_{2}) be the subspace of V spanned by $\left\{x_{0}, \ldots, x_{n_{1}}\right\}$ (resp. $\left\{x_{n_{1}}\right.$, $\left.\left.\ldots, x_{n}\right\}\right)$. Let $W=S^{m} V, W_{i}=S^{m} V_{i}$ for $i=1,2$, and

$$
W_{3}=\sum_{i+j=m, i j \neq 0} S^{i} V_{1}^{\prime} \otimes S^{j} V_{2}^{\prime},
$$

where $V_{1}^{\prime}=\sum_{i=0}^{n_{1}-1} k x_{i}$ and $V_{2}^{\prime}=\sum_{i=n_{1}+1}^{n} k x_{i}$. Evidently we have $W=$ $\sum_{i=1}^{3} W_{i}$. Let R be the maximal torus of $G L(V)$ diagonalized by x_{0}, \ldots, x_{n} and $R_{i}=R \cap G L\left(V_{i}\right)$ for each i, where $G L\left(V_{i}\right)$ is identified with a suitable subgroup of $G L(V)$ as in the discussion preceding Proposition 2.1. Of course, R_{1} (resp. R_{2}) is identified with the maximal torus of $G L\left(V_{1}\right)$ (resp. $G L\left(V_{2}\right)$) diagonalized by $x_{0}, \ldots, x_{n_{1}}$ (resp. $x_{n_{1}}, \ldots, x_{n}$).

For each $m \geq 2$, we have

$$
\begin{equation*}
\left(I_{X}\right)_{m}=\left(I_{X} \cap W_{1}\right)+\left(I_{X} \cap W_{2}\right)+\left(I_{X} \cap W_{3}\right) \tag{3}
\end{equation*}
$$

We claim that the property of coordinates (\dagger) implies that this is a direct sum decomposition. Indeed, since $W_{1} \cap W_{2}$ is the 1-dimensional space $k . x_{n_{1}}^{m}$ and $x_{n_{1}}^{m}$ does not vanish at $\{p\}=X_{1} \cap X_{2}, I_{X} \cap W_{1} \cap W_{2}=0$. Since W_{1} and W_{2} meet W_{3} trivially, the claim follows and we may apply Proposition 2.1.

Note that the three terms on the right hand side of (3) are

$$
I_{X_{1}} \cap k\left[x_{0}, \ldots, x_{n_{1}}\right]_{m}, I_{X_{2}} \cap k\left[x_{n_{1}}, \ldots, x_{n}\right]_{m} \quad \text { and } T_{m}
$$

respectively, where $T=\left\langle x_{0}, \ldots, x_{n_{1}-1}\right\rangle\left\langle x_{n_{1}+1}, \ldots, x_{n}\right\rangle$. Then by Proposition 2.1, we have
$(\dagger \dagger) \Xi_{\Lambda^{N}\left(I_{X}\right)_{m}}(R)=\Xi_{\left[\Lambda^{\left.N_{1}\left(I_{X} \cap W_{1}\right)\right]}\right.}\left(R_{1}\right)+\Xi_{\left[\Lambda^{N_{2}}\left(I_{X} \cap W_{2}\right)\right]}\left(R_{2}\right)+\Xi_{\left[\Lambda^{N_{3}} T_{m}\right]}(R)$,
where N and N_{i} denote the appropriate dimensions. As observed in the introduction, we may naturally identify the characters $\prod_{i=0}^{n} \chi_{i}^{a_{i}}$ with the Laurent monomials $\prod_{i=0}^{n} x_{i}^{a_{i}} \in k\left(x_{0}, \ldots, x_{n}\right)$, where χ_{i} is the projection $t=$ $\left(t_{0}, \ldots, t_{N}\right) \mapsto t_{i}$. Identifying the characters with monomials and taking the convex hull of both sides, we obtain Theorem 1.2 for the case $\ell=2$ from which, as observed in [2], the general case follows by a simple induction.

Remark 2.2. Note that since T is a monomial ideal, $\Xi_{\left[\wedge^{N_{3}} T_{m}\right]}(R)$ consists of one point χ^{τ} where $\tau=\sum_{x^{\alpha} \in T_{m}} \alpha$.

2.2. Decomposition of vertices

Let P_{1}, \ldots, P_{r} be polytopes in \mathbb{R}^{n}. In general, every face F of the Minkowski $\operatorname{sum} \sum_{i=1}^{r} P_{i}$ has a unique decomposition $F=\sum_{i=1}^{r} F_{i}$ into a sum of faces F_{i} of P_{i}. The converse is easily seen to be false: If the origin $\mathbf{0}$ is a vertex of a polytope P, then $\mathbf{0}+v=v$ is not a vertex of $2 P$ for any nonzero vertex v of P. The following lemma guarantees that vertices always sum up to be a vertex provided that the polytopes are positioned well enough.

Lemma 2.3. Let P_{1}, P_{2} be polytopes in \mathbb{R}^{n}. Suppose that P_{1} and P_{2} are contained in affine hyperplanes H_{1} and H_{2} respectively such that $H_{1} \cap H_{2}$ is of dimension one. Then the vertices of the Minkowski sum $P_{1}+P_{2}$ are precisely the sums of vertices of P_{1} and P_{2}.

Proof. It is evident that a vertex of $P_{1}+P_{2}$ is a sum of vertices of P_{1} and P_{2} since for any subsets S_{1} and S_{2} of \mathbb{R}^{n}, the sum of their convex hulls is the convex hull of their sum $S_{1}+S_{2}$. To prove the converse, we start by choosing affine coordinates x_{1}, \ldots, x_{n} judiciously so that

$$
H_{1}=\left\{\mathbf{x} \in \mathbb{R}^{n} \mid \sum_{i=1}^{n_{1}} x_{i}=N_{1}, x_{i}=0, \forall i>n_{1}\right\}
$$

and

$$
H_{2}=\left\{\mathbf{x} \in \mathbb{R}^{n} \mid \sum_{i=n_{1}}^{n} x_{i}=N_{2}, x_{i}=0, \forall i<n_{1}\right\}
$$

Let $\left\{v_{1}, \ldots, v_{r}\right\}$ and $\left\{w_{1}, \ldots, w_{s}\right\}$ be the sets of vertices of P_{1} and P_{2}, respectively. We aim to show that $v_{i}+w_{j}$ is a vertex of $P_{1}+P_{2}$ for any i, j. Suppose it is not the case - suppose without losing generality $v_{1}+w_{1}$ is not a vertex. Then there exist $\lambda_{i j}$ for $i=1, \ldots, r, j=1, \ldots, s$ such that $\sum_{i, j} \lambda_{i j}=1$, $0 \leq \lambda_{i j} \leq 1, \lambda_{11}=0$ and

$$
v_{1}+w_{1}=\sum_{i, j} \lambda_{i j}\left(v_{i}+w_{j}\right)
$$

By rearranging the terms, we have

$$
\left(1-\sum_{j} \lambda_{1 j}\right) v_{1}-\sum_{i \neq 1} \lambda_{i j} v_{i}=\sum_{j \neq 1} \lambda_{i j} w_{j}+\left(\sum_{i} \lambda_{i 1}-1\right) w_{1} \in H_{1} \cap H_{2}
$$

which implies that $x_{n_{1}}$ is the only nonzero coordinate of each side. Moreover, $1-\sum_{j} \lambda_{1 j} \neq 0$ or $\sum_{i} \lambda_{i 1}-1 \neq 0$ since $\sum_{i, j} \lambda_{i j}=1$. Suppose the $1-\sum_{j} \lambda_{1 j} \neq 0$ (the other case is proved similarly) and let $v_{i}=\left(v_{i 1}, \ldots, v_{i n_{1}}\right)$. Then we have

$$
v_{1 k}=\sum_{\substack{i \neq 1 \\ 1 \leq j \leq s}} \mu_{i j} v_{i k}, \quad k \neq n_{1}
$$

where $\mu_{i j}=\lambda_{i j} /\left(1-\sum_{j^{\prime}=1}^{s} \lambda_{1 j^{\prime}}\right)$ and $\sum_{\substack{i \neq 1 \\ 1 \leq j \leq s}} \mu_{i j}=1$.

The n_{1} th coordinate also satisfies the above condition because

$$
\begin{aligned}
v_{1 n_{1}} & =N_{1}-\sum_{k=1}^{n_{1}-1} v_{1 k} \\
& =N_{1}-\sum_{k=1}^{n_{1}-1} \sum_{\substack{i \neq 1 \\
1 \leq j \leq s}} \mu_{i j} v_{i k} \\
& =\sum_{\substack{i \neq 1 \\
1 \leq j \leq s}} \mu_{i j} N_{1}-\sum_{\substack{i \neq 1 \\
1 \leq j \leq s}} \sum_{k=1}^{n_{1}-1} \mu_{i j} v_{i k} \\
& =\sum_{\substack{i \neq 1 \\
1 \leq j \leq s}} \mu_{i j}\left(N_{1}-\sum_{k=1}^{n_{1}-1} v_{i k}\right) \\
& =\sum_{\substack{i \neq 1 \\
1 \leq j \leq s}} \mu_{i j} v_{i n_{1}}
\end{aligned}
$$

which means that $v_{1}=\sum_{i \neq 1}\left(\sum_{j=1}^{s} \mu_{i j}\right) v_{i}$. But this is a contradiction since v_{1} is a vertex of P_{1}.

As an immediate corollary, we obtain:
Corollary 2.4. Retain notations from Theorem 1.2. Let \mathcal{V}_{i} denote the set of vertices of $\mathcal{P}_{m}\left(I_{X_{i}} \cap k\left[x_{n_{i-1}}, \ldots, x_{n_{i}}\right]\right), i=1, \ldots, \ell$. Then the vertices of $\mathcal{P}_{m}\left(I_{X}\right)$ are precisely

$$
\left\{\tau+\sum_{i=1}^{\ell} v_{i} \mid v_{i} \in \mathcal{V}_{i}\right\}
$$

Proof. The $\ell=2$ case follows from Lemma 2.3: The state polytopes $\mathcal{P}_{m}\left(I_{X_{1}} \cap\right.$ $\left.k\left[x_{0}, x_{1}, \ldots, x_{n_{1}}\right]\right)$ and $\mathcal{P}_{m}\left(I_{X_{2}} \cap k\left[x_{n_{1}}, x_{n_{1}+1} \ldots, x_{n}\right]\right)$ are in the affine hyperplanes

$$
H_{1}=\left\{\mathbf{x} \in \mathbb{R}^{n} \mid \sum_{i=0}^{n_{1}} x_{i}=Q_{1}(m), x_{i}=0, \forall i>n_{1}\right\}
$$

and

$$
H_{2}=\left\{\mathbf{x} \in \mathbb{R}^{n} \mid \sum_{i=n_{1}}^{n} x_{i}=Q_{2}(m), x_{i}=0, \forall i<n_{1}\right\}
$$

respectively, where $Q_{1}(m)=\operatorname{dim} I_{X_{1}} \cap k\left[x_{0}, x_{1}, \ldots, x_{n_{1}}\right]_{m}$ and $Q_{2}(m)=\operatorname{dim} I_{X_{2}}$ $\cap k\left[x_{n_{1}}, x_{n_{1}+1} \ldots, x_{n}\right]_{m}$. Since $H_{1} \cap H_{2}$ is one dimensional, Lemma 2.3 applies. The general, $\ell \geq 2$ case follows by induction.

3. Decomposition of Hilbert-Mumford index

Retain the notations from Section 2.1. To prove Proposition 1.3, as in [2] we shall assume that $\ell=2$ as the general case follows by a simple induction. We let $Q(m)=\operatorname{dim}\left(I_{X}\right)_{m}$ and $P(m)=\operatorname{dim}\left(S / I_{X}\right)_{m}=\operatorname{dim} S_{m}-Q(m)$. Likewise, $Q_{i}(m)=\operatorname{dim}\left(I_{X_{i}}\right)_{m}$ and $P_{i}(m)=\operatorname{dim} S^{m} V_{i}-Q_{i}(m)$. Let ρ be a 1-PS of R and let ρ_{i} be the induced 1-PS of $R_{i}, i=1,2$. These are obtained by composing with the projections $R \rightarrow R_{i}$. Recall that, if the sum of the ρ-weights is zero, the Hilbert-Mumford index is given by

$$
\mu\left(\left[I_{X}\right]_{m}, \rho\right)=\max \left\{-\langle\chi, \rho\rangle \mid \chi \in \Xi_{\left[I_{X}\right]_{m}}(R)\right\}
$$

where \langle,$\rangle denotes the natural pairing of the character group and the 1-PS$ group, i.e., $\chi \circ \rho(t)=t^{\langle\chi, \rho\rangle}$ for any $t \in \mathbb{G}_{m}(k)$.

For any $\chi \in \Xi_{\left[I_{X}\right]_{m}}(R)$, due to $(\dagger \dagger)$, we have $\chi=\chi_{1}+\chi_{2}+\tau, \chi_{i}=\iota_{i} \circ \chi$ where $\iota_{i}: R_{i} \rightarrow R$ is the inclusion. And τ is the character with which ρ acts on

$$
\bigwedge \bigwedge^{\max }\left(I \cap \sum_{i+j=m, i j \neq 0} S^{i} V_{1} \otimes S^{j} V_{2}\right)=T_{m}
$$

where $T=\left\langle x_{0}, \ldots, x_{n_{1}-1}\right\rangle\left\langle x_{n_{1}+1}, \ldots, x_{n}\right\rangle$.
Hence we have

$$
\langle\chi, \rho\rangle=\left\langle\chi_{1}, \rho_{1}\right\rangle+\left\langle\chi_{2}, \rho_{2}\right\rangle+\langle\tau, \rho\rangle .
$$

Clearly, the minimum of $\langle\chi, \rho\rangle$ is achieved precisely when each χ_{i} pairs minimally with ρ. Let ρ^{\prime} be the $1-\mathrm{ps}$ of $S L(V)$ associated to ρ, i.e., if r_{i} are the weights of ρ, then ρ^{\prime} is the $1-\mathrm{ps}$ with weights $r_{i}-w$ where w is the average of the weight $\frac{1}{\operatorname{dim} V} \sum_{i=1}^{n} r_{i}$. Conflating a $1-\mathrm{ps}$ with its weight vector, we may write $\rho=\rho^{\prime}+(w, w, \ldots, w)$.

The minimum of $\langle\chi, \rho\rangle$ is achieved by

$$
\sum_{x^{\alpha} \in\left(\mathbf{i n}_{\left.\prec_{\rho} I_{X}\right)_{m}} \chi^{\alpha}, ., ~ ., ~\right.}
$$

where we used the multiplicative multi-vector notation $\chi^{\alpha}=\Pi \chi_{i}^{\alpha_{i}}$ as in the discussion preceding Theorem 1.1. Note that

$$
\begin{aligned}
\langle\chi, \rho\rangle & =\left\langle\chi, \rho^{\prime}\right\rangle+\langle\chi,(w, w, \ldots, w)\rangle \\
& =-\mu\left(\left[I_{X}\right]_{m}, \rho\right)+w \sum_{x^{\alpha} \in\left(\mathbf{i n}_{\prec_{\rho} I_{X}}\right)_{m}}\left(\sum_{i=0}^{n} \alpha_{i}\right) \\
& =-\mu\left(\left[I_{X}\right]_{m}, \rho\right)+w m Q(m) .
\end{aligned}
$$

Similarly, let ρ_{i}^{\prime} denote the 1-ps of $S L\left(V_{i}\right)$ associated to $\rho_{i}, i=1,2$, whose weights are shifted by the average weight $w_{i}=\frac{\sum_{x_{j} \in V_{i}} \mathrm{wt}_{\rho}\left(x_{j}\right)}{\operatorname{dim} V_{i}}$. Clearly, χ_{i} pairs
with ρ_{i} minimally if and only if it pairs with ρ_{i}^{\prime} minimally, and

$$
\min \left\langle\chi_{i}, \rho_{i}\right\rangle=-\mu\left(\left[I_{X_{i}} \cap S^{m} V_{i}\right]_{m}, \rho_{i}\right)+w_{i} m Q_{i}(m)
$$

Hence we have

$$
\begin{aligned}
\mu\left(\left[I_{X}\right]_{m}, \rho\right)= & -\min \left\langle\chi_{1}, \rho_{1}\right\rangle-\min \left\langle\chi_{2}, \rho_{2}\right\rangle-\langle\tau, \rho\rangle+m w Q(m) \\
= & \mu\left(\left[I_{X_{1}} \cap k\left[x_{0}, \ldots, x_{n_{1}}\right]\right]_{m}, \rho_{1}\right)+\mu\left(\left[I_{X_{2}} \cap k\left[x_{n_{1}}, \ldots, x_{n}\right]\right]_{m}, \rho_{2}\right) \\
& -w_{1} m Q_{1}(m)-w_{2} m Q_{2}(m)-\sum_{x^{\alpha} \in T_{m}} \operatorname{wt}_{\rho}\left(x^{\alpha}\right)+w m Q(m) .
\end{aligned}
$$

Substitute $\operatorname{dim} S^{m} V-Q(m)=P(m)$ and $\operatorname{dim} S^{m} V_{i}-P_{i}(m)=Q_{i}(m)$. Subsequently, substitute $\sum_{x^{\alpha} \in S^{m} V} \mathrm{wt}_{\rho}\left(x^{\alpha}\right)$ for $m w \operatorname{dim} S^{m} V$ and $\sum_{x^{\alpha} \in S^{m} V_{i}} \mathrm{wt}_{\rho}\left(x^{\alpha}\right)$ for $m w_{i} \operatorname{dim} S^{m} V_{i}$. Then we get

$$
\begin{align*}
\mu\left(\left[I_{X}\right]_{m}, \rho\right)= & \mu\left(\left[I_{X_{1}} \cap k\left[x_{0}, \ldots, x_{n_{1}}\right]\right]_{m}, \rho_{1}\right)+\mu\left(\left[I_{X_{2}} \cap k\left[x_{n_{1}}, \ldots, x_{n}\right]\right]_{m}, \rho_{2}\right) \\
& +w_{1} m P_{1}(m)+w_{2} m P_{2}(m)+\operatorname{wt}_{\rho}\left(x_{n_{1}}^{m}\right)-w m P(m),
\end{align*}
$$

since $S^{m} V_{1} \coprod\left(S^{m} V_{2} \backslash\left\{x_{n_{1}}^{m}\right\}\right) \coprod T_{m}=S^{m} V$. Recall from Lemma 1.4 and its proof that $\left[I_{X}\right]_{m}$ and $\left[I_{X}\right]_{m}^{*}$ have the same Hilbert-Mumford indices, and that ρ acts with opposite weights on $\mathbb{P}\left(\bigwedge S_{m}^{*}\right)$ in which the dual Hilbert points live. That is, if w^{*} is the average of the weights for the ρ action on $\mathbb{P}\left(\bigwedge S_{m}^{*}\right)$, then $w *=-w$ so that the signs of the terms $w m P(m), w_{i} m P_{i}(m)$ are reversed. Hence (\ddagger) is precisely the assertion of Proposition 1.3 for the case $\ell=2$.

References

[1] D. Bayer and I. Morrison, Standard bases and geometric invariant theory. I. Initial ideals and state polytopes, J. Symbolic Comput. 6 (1988), no. 2-3, 209-217.
[2] D. Hyeon and J. Kim, A state polytope decomposition formula, Proc. Edinb. Math. Soc. (2) 59 (2016), no. 3, 759-776.
[3] G. R. Kempf, Instability in invariant theory, Ann. of Math. (2) 108 (1978), no. 2, 299316.
[4] D. Mumford, Geometric Invariant Theory, Ergebnisse der Mathematik und ihrer Grenzgebiete, Neue Folge, Band 34, Springer-Verlag, Berlin, 1965.

Donghoon Hyeon
Department of Mathematical Sciences
Seoul National University
Seoul 08826, Korea
Email address: dhyeon@snu.ac.kr
Jaekwang Kim
Department of Mathematics
POSTECH
Pohang 790-784, Korea

