DOI QR코드

DOI QR Code

A GENERALIZATION OF GAUSS' TRIANGULAR THEOREM

  • Ju, Jangwon (Department of Mathematical Sciences Seoul National University) ;
  • Oh, Byeong-Kweon (Department of Mathematical Sciences and Research Institute of Mathematics Seoul National University)
  • Received : 2017.07.18
  • Accepted : 2018.03.08
  • Published : 2018.07.31

Abstract

A quadratic polynomial ${\Phi}_{a,b,c}(x,y,z)=x(ax+1)+y(by+1)+z(cz+1)$ is called universal if the diophantine equation ${\Phi}_{a,b,c}(x,y,z)=n$ has an integer solution x, y, z for any nonnegative integer n. In this article, we show that if (a, b, c) = (2, 2, 6), (2, 3, 5) or (2, 3, 7), then ${\Phi}_{a,b,c}(x,y,z)$ is universal. These were conjectured by Sun in [8].

Keywords

Acknowledgement

Supported by : National Research Foundation of Korea

References

  1. J. Ju, B.-K. Oh, and B. Seo, Ternary universal sums of generalized polygonal numbers, arXiv:1612.01157.
  2. Y. Kitaoka, Arithmetic of Quadratic Forms, Cambridge Tracts in Mathematics, 106, Cambridge University Press, Cambridge, 1993.
  3. http://magma.maths.usyd.edu.au.
  4. B.-K. Oh, Regular positive ternary quadratic forms, Acta Arith. 147 (2011), no. 3, 233- 243. https://doi.org/10.4064/aa147-3-3
  5. B.-K. Oh, Ternary universal sums of generalized pentagonal numbers, J. Korean Math. Soc. 48 (2011), no. 4, 837-847. https://doi.org/10.4134/JKMS.2011.48.4.837
  6. O. T. O'Meara, The integral representations of quadratic forms over local fields, Amer. J. Math. 80 (1958), 843-878. https://doi.org/10.2307/2372837
  7. O. T. O'Meara, Introduction to Quadratic Forms, Die Grundlehren der mathematischen Wissenschaften, Bd. 117, Academic Press, Inc., Publishers, New York, 1963.
  8. Z.-W. Sun, On x(ax+1)+y(by+1)+z(cz+1) and x(ax+b)+y(ay+c)+z(az+d), J. Number Theory 171 (2017), 275-283. https://doi.org/10.1016/j.jnt.2016.07.024