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APPROXIMATE AND CHARACTER AMENABILITY OF

VECTOR-VALUED LIPSCHITZ ALGEBRAS

Emamgholi Biyabani and Ali Rejali

Abstract. For a metric space (X, d) and α > 0. We study the struc-
ture and properties of vector-valued Lipschitz algebra Lipα(X,E) and

lipα(X,E) of order α. We investigate the approximate and Character

amenability of vector-valued Lipschitz algebras.

1. Introduction and preliminaries

Let (X, d) be a metric space and B(X) (resp. Cb(X)) indicates the Banach
space consisting of all bounded complex valued functions on X, endowed with
the norm

‖f‖sup = sup
x∈X
|f(x)| (f ∈ B(X)).

Take α ∈ R with α > 0. Then LipαX is the subspace of B(X), consisting of
all bounded complex-valued functions f on X such that

pα(f) := sup

{
|f(x)− f(y)|
d(x, y)α

: x, y ∈ X, x 6= y

}
<∞.

It is known that LipαX endowed with the norm ‖ · ‖α given by

‖f‖α = pα(f) + ‖f‖sup;

and pointwise product is a unital commutative Banach algebra, called Lipschitz
algebra.

Let (X, d) be a metric space with at least two elements and (E, ‖ · ‖) be a
Banach space over the scalar field F(= R or C) for a constant α > 0 and a
function f : X −→ E, set

pα,E(f) := sup
x 6=y

‖f(x)− f(y)‖
d(x, y)α

,

which is called the Lipschitz constant of f . Define

Lipα(X,E) = {f : X −→ E : f is bounded and pα(f) <∞}.
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The Lipschitz algebra lipα(X,E) is the subalgebra of Lipα(X,E) defined by

lipα(X,E) = {f : X −→ E :
‖f(x)− f(y)‖

d(x, y)α
−→ 0 as d(x, y) −→ 0}.

Finally, ifX is a locally compact metric space, then lip0
α(X,E) is the subalgebra

of lipα(X,E) consisting of those functions whose norm tend to zero at infinity.
The elements of Lipα(X,E) and lipα(X,E) are called big and little Lipschitz
operators and for each element f of Lipα(X,E), define

‖f‖α,E = pα,E(f) + ‖f‖∞,E .

Let Cb(X,E) be the set of all bounded continuous functions from X into E
and for each f ∈ Cb(X,E), define

‖f‖∞,E = sup
x∈X
‖f(x)‖,

and for f, g ∈ Cb(X,E) and λ ∈ F, define

(f + g)(x) = f(x) + g(x), (λf)(x) = λf(x), (x ∈ X).

It is easy to see that (Cb(X,E), ‖ · ‖∞,E) becomes a Banach space over F and
Lipα(X,E) is a linear subspace of Cb(X,E) [6]. In their papers [6, 7] Cao,
Zhang and Xu proved that (Lipα(X,E), ‖ · ‖α,E) is a Banach space over F
and lipα(X,E) is a closed linear subspace of (Lipα(X,E), ‖ · ‖α,E). If E is a
Banach algebra, then (Lipα(X,E), ‖ · ‖α,E) is a Banach algebra under point-
wise and scalar multiplication and lipα(X,E) is a closed linear subalgebra of
(Lipα(X,E), ‖ · ‖α,E). The spaces Lipα(X,E) and lipα(X,E) are called big
and little Lipschitz operators algebra. It is clear that the Lipschitz algebras
Lipα(X,E) contains the space Cons(X,E) consisting of all constant E-valued
functions on X. The Lipschitz algebras were first considered by Sherbert
[22]; see also Bishop [5]. There are valuable works related to some notions
of amenability of Lipschitz algebras. Gourdeau [11] discussed amenability of
vector-valued Lipschitz algebras. Also he proved that if a Banach algebra A
is amenable, then ∆(A) is uniformly discrete with respect to norm topology
induced by A∗; see also Bade, Curtis, and Dales [3], Gourdeau [10] and Zhang
[23]. Moreover Hu, Monfared and Traynor investigated character amenability
of Lipschitz algebras, see [13]. They showed that if X is an infinite compact
metric space and 0 < α < 1, then LipαX is not character amenable. Moreover,
recently C-character amenability of Lipschitz algebras was studied by Dashti,
Nasr Isfahani and Soltani for each α > 0 see [9]. In fact as a generalization
of [20], they showed that for α > 0 and any locally compact metric space X,
the algebra LipαX is C-character amenable, for some C > 0, if and only if X
is uniformly discrete. Also a necessary and sufficient condition for amenability
and character amenability of Lipschitz algebras was provided; see [9]. Sherbert
[22], Honary, Nikou and Sanatpour [12] and Bade [3], studied some properties
of Lipschitz algebras.
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In this paper, we study some structure and properties of vector-valued Lip-
schitz algebra Lipα(X,E), lipα(X,E) and lip0

α(X,E) of order α. Furthermore
we obtain some necessary and sufficient conditions for amenability, C-character
amenability and approximately amenability of vector-valued Lipschitz opera-
tors algebras.

2. Preliminaries and some basic results

Let (X, d) be a metric space and α > 0. It is easy to show that Lipα(X,E),
lipα(X,E) and lip0

α(X,E) is a vector space, Banach space and Banach algebra,
whenever E is so, respectively. Also it is easy to see that if (X, d) is a metric
space and E be a Banach algebra. Then Lipα(X,E) is a commutative (unital)
Banach algebra if and only if E is a commutative (unital) Banach algebra. Let
E be a ∗-Banach algebra, f∗(x) = (f(x))∗ for x ∈ X and f ∈ Lipα(X,E).
Then pα(f∗) = pα(f) and ‖f∗‖∞,E = ‖f‖∞,E , so Lipα(X,E) is a ∗-Banach
algebra. We first bring some preliminary result and definitions. The first one,
which appeared in [12] for compact metric space and 0 < α 6 1. We generalized
for arbitrary metric space and for each α > 0.

Lemma 2.1. Let (X, d) be a metric space, α > 0 and E be a Banach algebra.
Then the following statements are equivalent.

(i) f ∈ Lipα(X,E).
(ii) σ ◦ f ∈ LipαX for all σ ∈ E∗.

Proof. Suppose that f ∈ Lipα(X,E) and σ ∈ E∗. Then

|σ ◦ f(x)− σ ◦ f(y)| 6 ‖σ‖‖f(x)− f(y)‖ 6 ‖σ‖pα,E(f)d(x, y)α, (x, y ∈ X).

Hence pα(σ ◦ f) 6 ‖σ‖pα,E(f) < ∞ and ‖σ ◦ f‖∞ 6 ‖σ‖‖f‖∞,E < ∞. Thus
σ ◦ f ∈ LipαX. Conversely, suppose that Tσ : Lipα(X,E) −→ LipαX, where
f 7→ σ ◦ f for all σ ∈ E∗ and f ∈ Lipα(X,E). Then {Tσ}σ∈E∗ is a family of
continuous linear functions such that

sup
‖σ‖61

‖Tσ(f)‖α 6 ‖f‖α,E <∞.

So by the Principle of Uniform Boundedness, we have sup‖σ‖61 ‖Tσ‖α < M for

some M > 0. So ‖σ ◦ f‖α 6M . Hence, pα(σ ◦ f) 6M and ‖σ ◦ f‖∞ 6M for
all f ∈ Lipα(X,E). Thus,

‖f(x)− f(y)‖ = sup
‖σ‖61

{|σ(f(x)− f(y))| 6Md(x, y)α.

Also, ‖f(x)‖ = sup‖σ‖61 |σ(f(x))| 6M and f ∈ Lipα(X,E). �

Remark 2.2. Let (X, d) be a metric space, α > 0 and E be a Banach algebra.
Then,

‖f‖α,E = sup{‖σ ◦ f‖α : σ ∈ E∗, ‖σ‖ 6 1}.

Corollary 2.3. Let (X, d) be a metric space, 0 < α 6 β and E be a Banach
algebra. Then
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(i) Lipβ(X,E) ⊆ Lipα(X,E).
(ii) lipβ(X,E) ⊂ Lipβ(X,E) ⊂ lipα(X,E) ⊂ Lipα(X,E).

Proof. Suppose that f ∈ Lipβ(X,E), then σ ◦ f ∈ LipβX and since LipβX ⊆
LipαX and so σ ◦ f ∈ LipβX, then by Lemma 2.1 f ∈ Lipα(X,E) for each
σ ∈ E∗.

Suppose that f ∈ Lipβ(X,E), then for all σ ∈ E∗ we have σ ◦ f ∈ LipβX ⊂
lipαX. Hence f ∈ lipα(X,E). �

In this section we study the structure of Lipschitz algebra Lipα(X,E).
The following examples show that the algebraic and topological properties of
Lipα(X,E) depend the metric space (X, d) order α and the structure of E. By
using Lemma 2.1, for Banach space, C0(Y ), Hilbert space H and Lp(Y, µ) for
1 6 p <∞ and σ-finite measure µ. The following is immediate.

Example 2.4. Let (X, d) be a metric space and α > 0.
(1) Let Y be a locally compact Hausdorff space and E = C0(Y ), E∗ =

Mb(Y ), the space of all complex-valued bounded, regular measures of Y . Thus
f ∈ Lipα(X,E) if and only if for each µ ∈Mb(Y ) there exists M > 0 such that

|
∫
Y

(f(a)− f(b))(y)dµ(y)| 6Md(a, b)α, (a, b ∈ X).

(2) Let H be a Hilbert space and E = H. Then E∗ = E, so f ∈ Lipα(X,E)
if and only if for each h ∈ H, there exist M > 0 and k ∈ H such that

|〈f(x)− f(y), k〉| 6Md(x, y)α, (x, y ∈ X).

(3) Let E = Lp(Y, µ). Then E∗ = Lq(Y, µ) for which 1
p + 1

q = 1. Thus

f ∈ Lipα(X,E) if and only if for each g ∈ Lq(Y, µ) there exists M > 0 such
that

|
∫
Y

(f(a)− f(b))(y)g(y)dµ(y)| 6Md(a, b)α, (a, b ∈ X).

(4) Let G be a locally compact Hausdorff topological group and E = (L1(G),
∗). Then E∗ = L∞(G), so f ∈ Lipα(X,E) if and only if g ∈ L∞(G) there exist
g ∈ L∞(G) and M > 0 such that

|
∫
G

g(x)(f(a)(x)− f(b)(x))dλ(x)| 6Md(a, b)α, (a, b ∈ G).

Where λ is the left Haar measure of G.
(5) Let G be a locally compact Hausdorff topological group and E = A(G),

the Fourier algebra of G. Then E∗ = V N(G), the Von-Neumann algebra of G.
Thus f ∈ Lipα(X,E) if and only if σ ∈ V N(G) there exists M > 0 such that

|σ(f(a))− σ(f(b))| 6Md(x, y)α, (a, b ∈ G).

Let σ ∈ V N(G), g = g1 ∗ g̃2 ∈ A(G) for g1, g2 ∈ L2(G). Then

〈σ, g1 ∗ g̃2〉 := 〈σ(g2), g1〉 =

∫
G

σ(g2)g1(x)dλ(x).



VECTOR-VALUED LIPSCHITZ ALGEBRAS 1113

Example 2.5. Let (X, d) be a normed space, α > 1 and E be a Banach
algebra. Then Lipα(X,E) = cons(X,E).

Proof. Suppose that f ∈ Lipα(X,E) so by Lemma 2.1 σ ◦ f ∈ LipαX for all
σ ∈ E∗ and for a, b ∈ X, define

F (t) := σ ◦ f(ta+ (1− t)b), t ∈ R.
Then, F : R −→ C such that there is M > 0 such that

|F (t1)− F (t2)| = |σ ◦ f(t1a+ (1− t1)b)− σ ◦ f(t2a+ (1− t2)b)|
6M‖t1a+ (1− t1)b− t2a− (1− t2)b‖α

6M |t1 − t2|α‖a− b‖α.
So F ∈ Lipα(R). But Lipα(R) = cons(R). Hence F (1) = F (0), so for all σ ∈ E∗
σ ◦ f(a) = σ ◦ f(b). Thus f is a constant. �

Recall that (X, d) is called uniformly discrete if there exists ε > 0 such that
d(x, y) ≥ ε for all x, y ∈ X with x 6= y.

Example 2.6. If (X, d) is not uniformly discrete, and 0 < α 6 1, then
cons(X,E) ⊂ Lipα(X,E) ⊂ l∞(X,E).

Proof. Since (X, d) is not uniformly discrete, then Lipα(X,E) ⊂ l∞(X,E).
Also, define

fα(x) =
dα(x, x1)

dα(x, x1) + dα(x, x2)
, (x1, x2 ∈ X, x1 6= x2).

Then fα ∈ Lipα(X,E) \ cons(X,E). �

Let (X, d) be a compact metric space and 0 < α 6 1 and E be a Banach
algebra. Then ∆(C(X,E)) = {∆x,σ : x ∈ X, σ ∈ ∆(E), where

∆x,σ(f) = σ(f(x)), (f ∈ Lipβ(X,E), x ∈ X).

Define ϕ : X×∆(E)→ ∆(C(X,E)) where (x, σ)→ ∆x,σ. Then ϕ is a bijection
and we denote, ∆(C(X,E)) = X ×∆(E).

Let (A, ‖ · ‖A) in (B, ‖ · ‖B) be a Banach algebras such that B ⊂ A and
B in A be dense and the inclusion map i : B −→ A is continuous. Then,
∆(B) = {ϕ|B : ϕ ∈ ∆(A)}. In particular, let (X, d) be a compact metric space
and 0 < α 6 1 and E be a Banach algebra. Then Lipα(X,E) and lipα(X,E)
are dense in C(X,E) and for all f ∈ Lipα(X,E), ‖f‖∞,E 6 ‖f‖α,E , see [4].
Thus, lipα(X,E) and Lipα(X,E) are Segal algebras in C(X,E). Thus,

∆(lipα(X,E)) = {ϕ|lipα(X,E) : ϕ ∈ X ×∆(E)} = {∆l
x,σ : x ∈ X, σ ∈ ∆(E)}.

Also

∆(Lipα(X,E)) = {ϕ|Lipα(X,E) : ϕ ∈ X ×∆(E)} = {∆L
x,σ : x ∈ X, σ ∈ ∆(E)}.

Let A be a commutative Banach algebra. Then the radical of A, denoted by
Rad(A), is defined by

Rad(A) = ∩ϕ∈∆(A) kerϕ.
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Clearly, Rad(A) is a closed ideal of A. Also A is called semisimple if

Rad(A) = {0}.

Theorem 2.7. Let (X, d) be a metric space, E be a commutative Banach
algebra and 0 < α 6 1. Then the following statements are equivalent.

(i) Cb(X,E) is semisimple.
(ii) Lipα(X,E) is semisimple.
(iii) lipα(X,E) is semisimple.
(iv) E is semisimple.

Proof. (iv)=⇒(i) Let x ∈ X and θx : Cb(X,E) → E, define by θx(f) = f(x).
Then θx is a linear, continuous and epimorphism. Thus,

θx(Rad(Cb(X,E))) ⊆ Rad(E) = {0}.

Thus

Rad(Cb(X,E)) ⊆ ker(θx) = {f : f(x) = 0}.
Hence Rad(Cb(X,E)) ⊆ ∩x∈X ker(θx) = {0}. So Cb(X,E) is semisimple.

(i)=⇒(iv) Let ϕ : E → Cb(X,E) define by ϕ(z) = ϕz where ϕz(x) = z for
x ∈ X. Then ϕ is a linear, isometric and homomorphism. Hence

ϕ(Rad(E)) ⊆ Rad(Cb(X,E)) = {0}.

But ϕ is one to one, so Rad(E) = {0}.
(ii)=⇒(iv) Let ϕ : E → Lipα(X,E) define by ϕ(z) = fz where fz(x) = z for

x ∈ X. Thus ‖fz‖α,E = ‖z‖ = ‖fz‖∞,E for each z ∈ E. so

ϕ(Rad(E)) ⊆ Rad(Lipα(X,E)) = {0}.

Then Rad(E) = {0}.
(iv)=⇒(ii) Let σ ∈ ∆(E) and ϕσ : Lipα(X,E) −→ LipαX define by ϕσ(f) =

σ ◦ f. Then ϕσ is a linear, continuous and epimorphism. Thus,

ϕσ(Rad(Lipα(X,E)) ⊆ Rad(LipαX) ⊆ ∩x∈Xδx = {0},

where δx(g) = g(x) for g ∈ LipαX. Hence

Rad(Lipα(X,E)) ⊆ ∩σ∈∆(E) kerϕσ = {f : σ ◦ f(x) = 0, σ ∈ ∆(E), x ∈ X}
= {f : f(x) ∈ ∩σ∈∆(E) kerσ, x ∈ X}
= {f : f(x) ∈ Rad(E), x ∈ X} = {0}.

(i)=⇒(iv) Let ϕ : E → Lipα(X,E) define by ϕ(z) = fz, where fz(x) = z for
x ∈ X. Then ‖fz‖α,E = ‖z‖ = ‖f‖∞,E for each z ∈ E. Thus ϕ is well-defined.
Also;

ϕ(Rad(E)) ⊆ Rad(Lipα(X,E)) = {0},
and ϕ is 1− 1, so Rad(E) = {0}.

(iii)⇐⇒(iv) is similar to (ii)⇐⇒(iv). �
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Suppose that x, y ∈ X and x 6= y. Let f(w) = min{1, d(w, y)α}. Then

f(x) 6= f(y).

Let 0 6= z ∈ E and g(x) = f(x)z. Then g(x) ∈ E and g(x) 6= 0, g(y) = 0.
Hence,

pα(g) = sup
a 6=b

‖f(a)z − f(b)z‖
d(a, b)α

= ‖z‖pα(f) <∞,

so g ∈ Lipα(X,E). Thus Lipα(X,E) is a ∗-Banach algebra such that separates
the points of X.

Lemma 2.8. Let (X, d) be a metric space and E be a Banach algebra. Then
the followings holds.

(i) E∗ ◦B(X,E) = B(X).
(ii) E∗ ◦ Lipα(X,E) = LipαX.
(iii) E∗ ◦ lipα(X,E) = lipαX.
(iv) If X is a locally compact metric space, then E∗ ◦ lip0

α(X,E) = lip0
αX.

(v) E∗ ◦ l∞(X,E) = l∞(X).
(vi) E∗ ◦ Cb(X,E) = Cb(X).

Proof. i) Suppose that σ ∈ E∗ and f ∈ B(X,E). Then

‖σ ◦ f(x)‖ 6 ‖σ‖‖f(x)‖ 6 ‖σ‖‖f‖∞, (x ∈ X).

Thus σ ◦ f ∈ B(X).
ii) Let g ∈ LipαX, 0 6= z ∈ E. Then there exists σ ∈ E∗ such that σ(z) = 1.

Put f(x) := g(x)z for x ∈ X. Then f ∈ Lipα(X,E) and g = σ ◦ f .
iii) Suppose that σ ∈ E∗ and f ∈ lipα(X,E). Then

|σ ◦ f(x)− σ ◦ f(y)|
d(x, y)α

6
‖σ‖‖f(x)− f(y)‖

d(x, y)α
−→ 0.

Therefore σ ◦ f ∈ lipαX. Conversely, if g ∈ lipαX, 0 6= σ ∈ E∗ and 0 6= z ∈ E.
Define f : X −→ E with f(x) = g(x)z. Then f ∈ lipα(X,E) such that g = σ◦f.
Hence lipαX ⊆ E∗ ◦ lipα(X,E).

iv) Suppose that σ ∈ E∗ and f ∈ lip0
α(X,E) so, f ∈ lipα(X,E) and f ∈

C0(X,E). Hence σ ◦ f ∈ lipαX ∩ C0(X) = lip0
αX. Conversely, if g ∈ lip0

αX
and 0 6= z ∈ E. Then there exists 0 6= σ ∈ E∗ such that σ(z) = 1. Define
f(x) := g(x)z. Then f ∈ lip0

α(X,E) and ‖f(x)‖ = ‖g(x)z‖ = |g(x)|‖z‖ < ε,
x ∈ X \K for some compact space K ⊆ X. Hence f ∈ C0(X,E)∩ lipα(X,E) =
lip0

α(X,E). These complete the proof of lemma. �

Corollary 2.9. Let (X, d) be a metric space, 0 < α 6 1 and E be a Banach
algebra. Then the following statements are equivalent.

(i) Lipα(X,E) = Cons(X,E).
(ii) LipαX = Cons(X).
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Proof. (i)=⇒(ii) By Lemma 2.8 we have

LipαX = E∗ ◦ Lipα(X,E) = E∗ ◦ Cons(X,E) = Cons(X).

(ii)=⇒(i) Let f ∈ Lipα(X,E) and σ ∈ E∗. Then by Lemma 2.1, σ ◦ f ∈
LipαX = Cons(X), so f ∈ Cons(X,E). �

Theorem 2.10. Let (X, d) be a metric space, α > 0 and E be a Banach
algebra. Then the following statements are equivalent.

(i) Lipα(X,E) = B(X,E) with equivalent norms.
(ii) LipαX = B(X) with equivalent norms.
(iii) (X, d) is uniformly discrete.
(iv) lipα(X,E) = B(X,E) with equivalent norms.
(v) lipαX = B(X) with equivalent norms.

Proof. (i)=⇒(ii) This is clear by Lemma 2.8,

LipαX = E∗ ◦ Lipα(X,E) = E∗ ◦B(X,E) = B(X).

(ii)=⇒(iii) By using [15] and [1, Proposition 1.1] is immediate.
(iii)=⇒(i) Suppose that (X, d) is uniformly discrete. Thus there exists ε > 0

such that for all x, y ∈ X with x 6= y we have

d(x, y) ≥ ε.

Suppose that f ∈ B(X,E). We have

pα(f) = sup
x 6=y

‖f(x)− f(y)‖
d(x, y)α

≤ 1

εα
sup
x 6=y
‖f(x)− f(y)‖ ≤ 2

εα
‖f‖∞ <∞.

It follows that f ∈ Lipα(X,E). Moreover,

‖f‖∞ ≤ ‖f‖α ≤ (1 +
2

εα
)‖f‖∞,

and consequently B(X,E) = Lipα(X,E) with equivalent norms. By a similar
argument an above one can show that the statements (iii), (iv) and (v) are
equivalent. �

Theorem 2.11. Let (X, d) be a metric space, E be a Banach algebra and
α, β > 0 and ∆(E) 6= ∅. Then the following statements are equivalent.

(i) Lipα(X,E) = Lipβ(X,E) with equivalent norms.
(ii) LipαX = LipβX with equivalent norms.
(iii) (X, d) is uniformly discrete or α = β.
(iv) lipα(X,E) = lipβ(X,E) with equivalent norms.
(v) lipαX = lipβX with equivalent norms.

Proof. (i)=⇒(ii) This is obtained by Lemma 2.1. We have

LipαX = E∗ ◦ Lipα(X,E) = E∗ ◦ Lipβ(X,E) = LipβX.

(ii)⇐⇒(iii). This is clear by [2, Lemma 1.5].
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(iii)=⇒(i) This is clear, since if (X, d) is uniformly discrete, then by Lemma
2.8 we have Lipα(X,E) = B(X,E) = Lipβ(X,E).

By a similar argument is used in above, one can show that the statements
(iii), (iv) and (v) are equivalent. �

Theorem 2.12. Let (X, d) be a metric space, E be a Banach algebra, where
∆(E) 6= ∅ and α, β > 0. Then the following statements are equivalent.

(i) Lipα(X,E) is a Lipβ(X,E)-module Banach.
(ii) LipαX is a LipβX-module Banach.
(iii) lipα(X,E) is a lipβ(X,E)-module Banach.
(iv) lipαX is a lipβX-module Banach.
(v) (X, d) is uniformly discrete or α 6 β.

Proof. (i)=⇒(ii) Suppose that Lipα(X,E) is a Lipβ(X,E)-module Banach.
Then

Lipα(X,E)Lipβ(X,E) ⊂ Lipα(X,E),

and

Lipβ(X,E)Lipα(X,E) ⊂ Lipα(X,E).

Let σ ∈ ∆(E) and z ∈ E such that σ(z) = 1, g ∈ LipβX and f ∈ LipαX. Put
f̄(x) := f(x)z and ḡ(x) := g(x)z. Then f̄ ∈ Lipα(X,E) and ḡ ∈ Lipβ(X,E)
and so

f̄ .ḡ ∈ Lipα(X,E) and ḡ.f̄ ∈ Lipα(X,E).

Hence,

σ ◦ f̄ .ḡ ∈ LipαX and σ ◦ ḡ.f̄ ∈ LipαX.
So, for all x ∈ X we have

σ ◦ f̄ .ḡ(x) = σ(f̄(x).ḡ(x)) = σ(f(x)z.g(x)z) = f(x)σ(z)g(x)σ(z) = f.g(x).

Therefore f.g = σ ◦ f̄ .ḡ ∈ LipαX. Similarly, g.f = σ ◦ ḡ.f̄ ∈ LipαX. Let
f ∈ LipαX and gn −→ g in LipβX. Then

‖f.gn − f.g‖α = ‖σ ◦ f̄ .ḡn − σ ◦ f̄ .ḡ‖α 6 ‖σ‖‖f̄ .ḡn − f̄ .ḡ‖α,E −→ 0.

Thus LipαX is a LipβX-module Banach.
The implication, (iii)=⇒(iv) is similar to (i)=⇒(ii).
By using [2, Proposition 1.6] the implication (ii)↔(v) and (iv)=⇒(v) is im-

mediate.
(v)=⇒(i) Suppose that (X, d) is uniformly discrete. Then

Lipα(X,E) = B(X,E) = Lipβ(X,E),

since

B(X,E)B(X,E) ⊂ B(X,E).

Thus Lipα(X,E) is a Lipβ(X,E)-module Banach. If α 6 β, clearly

Lipβ(X,E) ⊆ Lipα(X,E).
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Hence

Lipα(X,E)Lipβ(X,E) ⊆ Lipα(X,E)Lipα(X,E) ⊆ Lipα(X,E).

Therefore, Lipα(X,E) is a Lipβ(X,E)-module Banach.
The implication (v)=⇒(iii) is similar to (v)=⇒(i). �

3. Character ameanablity of vector-valued Lipschitz algebras

Let A be a Banach algebra and ∆(A) denotes the spectrum of A consisting
of all nonzero multiplicative linear functionals on A. In [16, 17], Kaniuth, Lau
and Pym introduced and studied the concept of ϕ-amenability for Banach
algebras, where ϕ ∈ ∆(A). In fact, a Banach algebra A is called ϕ-amenable
if there exists a bounded linear functional m on A∗, satisfying m(ϕ) = 1 and
m(fa) = m(f).ϕ(a) for all a ∈ A and f ∈ A∗ where fa ∈ A∗ is defined by
(fa)(b) = f(ab), (b ∈ A). Let ϕ be the identity map, then ϕ-amenability is
the same as amenability, see Lau [18]. Moreover, for some C > 0, A is called
C-ϕ-amenable if m is bounded by C; see Hu, Monfared and Traynor [13]. The
notion of (right) character amenability was introduced and studied by Monfared
[20]. Character amenability of A is equivalent to A being ϕ-amenable for all
ϕ ∈ ∆(A), and A having a bounded right approximate identity. The concept of
character amenability is defined similarly see [17] for more details in this field.

There are valuable works related to some notions of amenable of Lipschitz
algebras. Gourdeau [11], discussed amenability of Lipschitz algebras and proved
that if a Banach algebra A is amenable, then ∆(A) is uniformly discrete with
respect to norm topology induced by A∗; see also Bade, Curtis and Dales [3],
Gourdeau [10] and Zhang [23]. Hu, Monfared and Traynor [13] investigated
character amenability of Lipschitz algebras. They showed that ifX is an infinite
compact metric space and 0 < α < 1, then LipαX is not character amenable.
Moreover, recently C-character amenability of Lipschitz algebras was studied
by Dashti, Nasr Isfahani and Soltani for each α > 0. In fact as a generalization
of [9], they showed that for α > 0 and any locally compact metric space X,
LipαX is C-character amenable for some C > 0, if and only if X is uniformly
discrete. In this section, we characterized C-character amenability of vector
valued Lipschitz algebras.

Lemma 3.1. Let (X, d) be a metric space and α > 0 such that Lipα(X,E)
(resp. lipα(X,E)) separates the points of X and E be a Banach algebra with
∆(E) 6= ∅. If Lipα(X,E) (resp. lipα(X,E)) is C-character amenable for some
C > 0. Then (X, d) is uniformly discrete.

Proof. Let A be any of the Lipschitz algebras above. Define for all f ∈ A,
x ∈ X and ψ ∈ ∆(E). φx : A −→ C where φx(f) = ψ ◦ f(x). Then φx is a
character of A. Since A is C-character amenable for some C > 0. It follows
from [9, Corollary 2.2] and [10] that 4(A) is uniformly discrete. Thus there is
ε > 0 such that for all distinct elements φx, φy in 4(A),

‖φx − φy‖A∗ > ε.
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We have,

ε < ‖φx − φy‖A∗ = sup
‖f‖α,E61

‖φx(f)− φy(y)‖A∗

= sup
‖f‖α,E61

|ψ ◦ f(x)− ψ ◦ f(y)|

= ‖ψ‖ sup
‖f‖α,E61

‖f(x)− f(y)‖
d(x, y)α

d(x, y)α 6 ‖ψ‖d(x, y)α

for all x, y ∈ X. Therefore d(x, y)α > ε
‖ψ‖ and so d(x, y) > ( ε

‖ψ‖ )
1
α and (X, d)

is uniformly discrete. �

It should be noted that Lipα(X,E) does not separate the points of X in
general, whenever α > 1. For example consider Rn endowed with the usual
Euclidean. Let f ∈ LipαX. Then

‖f(x)− f(y)− 0(x− y)‖
‖x− y‖

6M‖x− y‖α−1, (x, y ∈ X)

for some M > 0. Thus Df(z) = 0 for each z ∈ X = Rn. Also,

‖f(x)− f(y)‖ 6 ‖Df(z)‖.‖x− y‖

for some z ∈ X, so f is constant. Therefore Lipα(X) = Cons(X). Thus
Lipα(Rn, E) = Cons(Rn, E) for all α > 1 by Corollary 2.9. In this situation,
Lipα(Rn, E) dose not separate the points of X.

Corollary 3.2. Let (X, d) be a metric space, 0 < α 6 1 and E be a commuta-
tive Banach algebra. If Lipα(X,E) (resp. lipα(X,E)) is C-character amenable
for some C > 0, then (X, d) is uniformly discrete.

Let (X, d) be a metric space and Cc(X,E) be Cb(X,E) with compact open
topology. In [19, Theorem 1.1], the author showed that Cc(X,E) ∼= Cc(X)⊗̌E
is an algebra isomorphism and isometric. If (X, d) is discrete, then compact
open topology is the same with discrete topology. Thus Cc(X,E) = l∞(X,E)
and Cc(X) = l∞(X). Hence l∞(X,E) = l∞(X)⊗̌E is an algebra isomorphism
with equivalent norm. Let ψ : l∞(X)⊗̂E → l∞(X,E) defined by ψ(f⊗a) = f.a.
Then ψ is a linear, one to one, homomorphism with dense range. If E is
amenable, then l∞(X)⊗̂E is amenable [21] . Thus l∞(X,E) = Lipα(X,E) is
amenable.

Theorem 3.3. Let (X, d) be a metric space, α > 0 and Lipα(X,E), lipα(X,E)
separates the points of X and E is a Banach algebra. Then the following
statements are equivalent.

(i) Lipα(X,E) (resp. lipα(X,E)) is amenable.
(ii) (X, d) is uniformly discrete and E is amenable.

Proof. (i)=⇒(ii) If Lipα(X,E) is amenable, then (X, d) is uniformly discrete
by [11, Theorem, 6]. Let x0 ∈ X and ϕ : Lipα(X,E) → E defined by ϕ(f) =
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f(x0). Then ϕ is a linear, homomorphism and onto. Thus E is amenable by
[21].

(ii)=⇒(i) Let (X, d) be uniformly discrete. Then l∞(X,E) = Lipα(X,E)

is a Banach algebra with equivalent norm and l∞(X,E) = l∞(X)⊗̂E. Thus
Lipα(X,E) is amenable by [21]. Similarly for lipα(X,E). �

Theorem 3.4. Let (X, d) be a metric space, α > 0, Lipα(X,E) and lipα(X,E)
separates the points of X, E is a amenable Banach algebra, and ∆(E) is non-
empty. Then the following statements are equivalent.

(i) Lipα(X,E) (resp. lipα(X,E)) is C-character amenable for some C >
0.

(ii) Lipα(X,E) (resp. Lipα(X,E)) is amenable.
(iii) (X, d) is uniformly discrete.
(iv) LipαX (resp. lipαX) is C-character amenable for some C > 0.
(v) Lipα(X,E) (resp. Lipα(X,E)) is amenable.

Proof. (i)=⇒(iii) By Lemma 3.1.
(iii)=⇒(ii) This follows from [10, Theorem 6] and Theorem 3.3.
(ii)=⇒(i) Since Lipα(X,E) is amenable, it has an approximate diagonal

bounded by some C > 0; see [21]. So, Lipα(X,E) is C-character amenable for
some by [13, Theorem 2.9].

Also, (iii), (iv) and (v) are equivalent by [9, Theorem 3.1]. �

Corollary 3.5. Let (X, d) be a metric space, 0 < α 6 1 and E be a commuta-
tive amenable Banach algebra. Then the following statements are equivalent.

(i) Lipα(X,E) (resp. lipα(X,E)) is C-character amenable for some C >
0.

(ii) Lipα(X,E) (resp. lipα(X,E)) is amenable.
(iii) (X, d) is uniformly discrete.
(iv) LipαX (resp. lipαX) is C-character amenable for some C > 0.
(v) LipαX (resp. lipαX) is amenable.

Remark 3.6. Let (X, d) be a locally compact metric space. Then Lemma 3.1,
Theorem 3.4 and Corollary 3.5 holds for lip0

α(X,E).

4. Approximately amenability of vector-valued Lipschitz algebras

Let A be a Banach algebra and let X be a Banach A-bimodule. A derivation
is a bounded linear map D : A −→ X such that D(ab) = aD(b) +D(a)b (a; b ∈
A). For x ∈ X, the map adx : A −→ X defined as adx(a) = ax− xa (a ∈ A) is
clearly a derivation on A called an inner derivation. A derivation D is called
approximately inner if there is a net (xα) in X such that

D(a) = lim
α
adxα(a) (a ∈ A).
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The groundwork for amenability of Banach algebras was laid by Johnson [14].
The concept of amenability has occupied an important place in research in Ba-
nach algebras. In classic memoir [14] Johnson, initiated the theory of amenable
Banach algebras. In fact a Banach algebra A is called approximately amenable
if for each Banach A-bimodule X every continuous derivation D : A −→ X∗

is approximately inner. For (X, d) compact metric space and 0 < α 6 1
Choi, Ghahramani [8, Theorem, 3.4] shows that lipα(X, d) is not approxi-
mately amenable. Now if (X, d) is a metric space, then we study approximately
amenability of vector-valued Lipschitz Algebras.

Definition 4.1. A separated, unbounded, multiplier-bounded configuration
(or SUM configuration for short) in A consists of two sequences (un), (pn) ⊆ A
which satisfy the following properties.

(i) (Separated) unpn = pnun = un for all n and ujpk = pkuj = 0 whenever
j 6= k.

(ii) (Unbounded) ‖un‖ −→ ∞ as n −→∞.
(iii) (Multiplier-bounded) The sequences (‖un‖mul) and (‖pn‖mul) are

bounded.

Define the multiplier norm on A by ‖a‖mul := max(‖λa‖, ‖ρa‖) where λa :
A→ A, x 7−→ ax is left multiplication by a and ρa : A→ A, x 7−→ xa is right
multiplication by a.

In [8] they proved that, if A is a Banach algebra, there exists an unbounded
but multiplier-bounded sequence (En)n>1 ⊆ A such that EnEn+1 = En =
En+1En for all n. Then A contains a SUM configuration. Also if A is a Ba-
nach algebra which contains a SUM configuration, then A is not approximately
amenable. We now state the main result of this section.

Theorem 4.2. Let (X, d) be a compact metric space, E be a unital Banach
algebra and 0 < α 6 1. Then lipα(X,E) and Lipα(X,E) are not approximately
amenable.

Proof. (i) We show that lipα(X,E) contains a SUM configuration. Suppose
that E has a unit e. By [8, Theorem, 3.4] lipα(X, d) contains a SUM configura-
tion, so there exists an unbounded but multiplier-bounded sequence (En)n>1 ⊆
lipα(X, d) such that EnEn+1 = En = En+1En for all n. For any x ∈ X define
Fn := En.e, hence

Fn.Fn+1(x) = En(x).eEn+1(x).e = En(x)En+1(x).e = En(x).e = Fn(x).

Thus Fn.Fn+1 = Fn. Similarly, Fn+1.Fn = Fn. Now we shows that (Fn) ⊆
lipα(X,E) is unbounded, we have

pα(Fn) = pα(En.e) = sup
x 6=y

‖En.e(x)− En.e(y)‖
d(x, y)α

= sup
x 6=y

‖En(x).e− En(y).e‖
d(x, y)α
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= pα(En)‖e‖ <∞

and

‖En‖∞ = ‖En.e‖∞ = sup
x∈X
‖En.e(x)‖ = sup

x∈X
‖En(x).e‖ 6 ‖En‖∞‖e‖.

Hence,

‖Fn‖α,E = ‖En.e‖α,E
= ‖En.e‖∞ + pα(En.e)

= ‖En‖∞‖e‖+ pα(En)‖e‖
= ‖En‖α‖e‖ −→ ∞.

Also, (Fn) ⊆ Lipα(X,E) and

‖Fn(x)− Fn(y)‖
d(x, y)α

=
‖En.e(x)− En.e(y)‖

d(x, y)α

=
‖En(x).e− En(y).e‖

d(x, y)α

= ‖e‖‖En(x)− En(y)‖
d(x, y)α

−→ 0.

Therefore (Fn) ⊆ lipα(X,E) Also ‖Fn‖α,E −→∞. Now we define

‖Fn‖mul = max{‖λFn‖, ‖ρFn‖},

where λFn : lipα(X,E) −→ lipα(X,E) with λFn(f) = Fn ◦ f. Therefore

‖λFn‖ = sup
‖f‖α,E61

‖λFn(f)‖α,E

= sup
‖f‖α,E61

‖Fn ◦ f‖α,E

= sup
‖f‖α,E61

‖(En.e) ◦ f‖α,E

6 sup
‖f‖α,E61

‖λEn(f).e‖α,E

6 ‖e‖ sup
‖f‖α,E61

‖λEn(f)‖α,E

= ‖e‖‖λEn‖ <∞.

Similarly, ‖ρFn‖ 6 ‖ρEn‖‖e‖ < ∞. Thus ‖Fn‖mul < ∞. Therefore lipα(X,E)
contains a SUM configuration. By [8, Theorem, 2.5] lipα(X,E) is not approx-
imately amenable.

(ii) Since lipα(X,E) ⊆ Lipα(X,E). Thus (Fn) ⊆ Lipα(X,E) is a SUM
configuration. Therefore Lipα(X,E) is not approximately amenable. �

Question 4.3. When are the vector-valued Lipschitz algebras lipα(X,E) and
Lipα(X,E) Arens regular?
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