Bull. Korean Math. Soc. 55 (2018), No. 4, pp. 1013-1022

https://doi.org/10.4134/BKMS.b170479 pISSN: 1015-8634 / eISSN: 2234-3016

## $\eta$ -PARALLEL H-CONTACT 3-MANIFOLDS

JONG TAEK CHO

ABSTRACT. In this paper, we give a local and global classification of 3-dimensional H-contact manifolds whose Ricci tensor is  $\eta$ -parallel.

#### 1. Introduction

Boeckx and the present author [3] proved that a locally symmetric contact Riemannian manifold is either Sasakian and of constant curvature 1 or locally isometric to the unit tangent sphere bundle (with its standard contact metric structure) of a Euclidean space. We may also refer to [2] for the 3-dimensional case. This result says that Cartan's local symmetry ( $\nabla R = 0$ ) is quite a strong condition in contact Riemannian geometry, where R denotes the Riemannian curvature tensor. In this context, a weaker condition called  $\eta$ -parallelism is introduced. For a contact Riemannian manifold  $M = (M; \eta, g, \phi, \xi)$ , the contact form  $\eta$  determines the contact distribution D which is given by the kernel of  $\eta$ . We say that the Ricci tensor S is  $\eta$ -parallel if S satisfies  $g((\nabla_X S)Y, Z) = 0$  for any  $X, Y, Z \in D$ . In this paper, we shall study 3-dimensional contact Riemannian manifolds whose Ricci tensor is  $\eta$ -parallel. In a previous paper [4], Lee and the present author gave a classification of such contact 3-manifolds under the condition  $\nabla_{\xi}h = \mu h \phi$ , where  $\mu \in \mathbb{R}$  and  $h = \frac{1}{2}L_{\xi}\phi$ .

On the other hand, Perrone ([10]) introduced a so-called H-contact structure, which means that the Reeb vector field  $\xi$  is a harmonic vector field. In the same paper, it was proved that a contact Riemannian manifold is H-contact if and only if  $\xi$  is an eigenvector of the Ricci operator S, that is,  $S\xi = \alpha \xi$  for some function  $\alpha$ . In the present paper, we give a local and global classification of H-contact 3-manifolds whose Ricci tensor is  $\eta$ -parallel. More precisely, we prove that:

**Theorem A** (local classification). Let M be a 3-dimensional H-contact manifold. Then the Ricci tensor S is  $\eta$ -parallel if and only if M is locally isometric to one of the following:

(1) a Sasakian  $\phi$ -symmetric space;

Received May 31, 2017; Revised October 24, 2017; Accepted December 29, 2017. 2010 Mathematics Subject Classification. Primary 53C25; Secondary 53B20, 53D10. Key words and phrases. contact 3-manifold,  $\eta$ -parallelism.

(2) SU(2) (or SO(3)),  $SL(2,\mathbb{R})$  (or O(1,2)), E(2) (the group of rigid motions of Euclidean 2-space) including a flat manifold, E(1,1) (the group of rigid motions of Minkowski 2-space) with a left invariant contact metric structure, respectively.

In [11] the authors gave a classification of a 3-dimensional Sasakian  $\phi$ -symmetric space (complete and simply connected Sasakian locally  $\phi$ -symmetric space). Together with this we have:

**Theorem B** (global classification). Let M be a complete and simply connected 3-dimensional H-contact manifold. Then S is  $\eta$ -parallel if and only if M is isometric to one of the following:

- (1) the standard unit sphere  $S^3$ ; SU(2),  $SL(2,\mathbb{R})$  (the universal covering of  $SL(2,\mathbb{R})$ ) or the Heisenberg group H with a left invariant Sasakian metric, respectively;
- (2) SU(2),  $SL(2,\mathbb{R})$ , E(2), E(1,1) with a left invariant contact metric structure, respectively.

At the end of Section 4, we remark the relationship between the H-contact condition and the condition  $\nabla_{\xi} h = \mu h \phi \ (\mu \in \mathbb{R})$ .

The author would like to thank the referee for his/her careful reading of the manuscript.

#### 2. Preliminaries

All manifolds in the present paper are assumed to be connected and of class  $C^{\infty}$ . First, we give a brief review of some fundamental facts and formulas on contact manifolds, which will be used later. We may also refer to [4]. A (2n+1)-dimensional manifold  $M^{2n+1}$  is said to be a contact manifold if it admits a global 1-form  $\eta$  such that  $\eta \wedge (d\eta)^n \neq 0$  everywhere. Given a contact form  $\eta$ , we have a unique vector field  $\xi$ , which is called the *Reeb vector field*, satisfying  $\eta(\xi) = 1$  and  $L_{\xi}\eta = 0$  (or  $i_{\xi}d\eta = 0$ ), where  $L_{\xi}$  denotes Lie differentiation for  $\xi$  and  $i_{\xi}$  denotes the interior product operator by  $\xi$ . Then we have a Riemannian metric g and a (1, 1)-tensor field  $\phi$  such that

(2.1) 
$$\eta(X) = g(X,\xi), \quad d\eta(X,Y) = g(X,\phi Y), \quad \phi^2 X = -X + \eta(X)\xi,$$

where X and Y are vector fields on M. A Riemannian manifold M equipped with structure tensors  $(\eta, g, \phi, \xi)$  satisfying (2.1) is said to be a contact Riemannian manifold and is denoted by  $M = (M; \eta, g, \phi, \xi)$ . For a contact Riemannian manifold M, we define a (1,1)-tensor field h by  $h = \frac{1}{2}L_{\xi}\phi$ . Then we may observe that h is self-adjoint and satisfies

(2.2) 
$$h\xi = 0 \quad \text{and} \quad h\phi = -\phi h,$$

$$(2.3) \nabla_X \xi = -\phi X - \phi h X,$$

where  $\nabla$  is Levi-Civita connection. From (2.2) and (2.3) we see that each trajectory of  $\xi$  is a geodesic. Along a trajectory of  $\xi$ , the Jacobi operator

 $\ell=R(\cdot,\xi)\xi$  is a symmetric (1,1)-tensor field, where R denotes the Riemannian curvature tensor. We have

(2.4) 
$$\operatorname{trace} \ell = q(S\xi, \xi) = 2n - \operatorname{trace} (h^2),$$

(2.5) 
$$\nabla_{\varepsilon} h = \phi - \phi \ell - \phi h^2,$$

$$(2.6) g(R(X,Y)\xi,Z) = g((\nabla_Z\phi)X,Y) + g((\nabla_Y\phi h)X - (\nabla_X\phi h)Y,Z)$$

for all vector fields X,Y,Z on M, where S is the Ricci tensor field of type (1,1). A contact Riemannian manifold for which  $\xi$  is Killing is called a K-contact manifold. It is easy to see that a contact Riemannian manifold is K-contact if and only if h=0. Moreover, we find that for a K-contact manifold  $S\xi=2n\xi$ , from which we see that a K-contact manifold admits already an H-contact structure, which means that the Reeb vector field  $\xi$  is a harmonic vector field (see, [10]). For a contact Riemannian manifold M one may define naturally an almost complex structure J on  $M \times \mathbb{R}$ . If the almost complex structure J is integrable, M is said to be normal or Sasakian. A Sasakian manifold is characterized by a condition

(2.7) 
$$R(X,Y)\xi = \eta(Y)X - \eta(X)Y$$

for all vector fields X and Y. For more details about contact Riemannian manifolds, we refer to [1].

For a contact Riemannian manifold M, the tangent space  $T_pM$  of M at each point  $p \in M$  is decomposed as  $T_pM = D_p \oplus \{\xi\}_p$  (direct sum), where we denote  $D_p = \{v \in T_pM \mid \eta(v) = 0\}$ . Then  $D: p \to D_p$  defines a distribution orthogonal to  $\xi$ , which is called the *contact distribution*.

**Definition 1** ([4]). A contact Riemannian manifold  $M=(M;\eta,g,\phi,\xi)$  is said to have an  $\eta$ -parallel Ricci tensor if  $g((\nabla_U S)V,W)=0$  for all vector fields  $U,V,W\in D$ .

A Sasakian manifold  $M=(M;\eta,g,\phi,\xi)$  is said to be locally  $\phi$ -symmetric if M satisfies

$$\phi^2(\nabla_V R)(X,Y)Z = 0$$

for all vector fields  $V, X, Y, Z \in D$  ([11]). Then we have:

**Proposition 1.** Let  $M=(M;\eta,g,\phi,\xi)$  be a Sasakian manifold. If M is locally  $\phi$ -symmetric, then M has an  $\eta$ -parallel Ricci tensor. In dimension 3, the converse also holds.

*Proof.* For a Sasakian manifold M, we compute

(2.8) 
$$(\nabla_{U}\rho)(V,W) = g((\nabla_{U}R)(\xi,V)W,\xi) + \sum_{i=1}^{n} g((\nabla_{U}R)(e_{i},V)W,e_{i}) + \sum_{i=1}^{n} g((\nabla_{U}R)(\phi e_{i},V)W,\phi e_{i})$$

for any adapted orthonormal basis  $\{\xi, e_i, \phi e_i\}$  (i = 1, 2, ..., n). From (2.3) and (2.7), we obtain  $g((\nabla_U R)(\xi, V)W, \xi) = 0$  for  $U, V, W \in D$ . Thus, from (2.8) we find that a Sasakian locally  $\phi$ -symmetric space has an  $\eta$ -parallel Ricci tensor. For the dimension 3, it is well-known that the curvature tensor R is expressed only in terms of the Ricci tensor S, the metric tensor S and the scalar curvature T (see (3.3)). Then, since  $S\xi = 2\xi$ , we see that an T-parallelism of Ricci tensor implies a local T-symmetry.

## 3. $\eta$ -parallel contact 3-manifolds

In this section, we prove Theorem A. For a 3-dimensional contact Riemannian manifold M, it is known that the associated almost CR-structure is integrable. Then we have (cf. [12])

$$(3.1) \qquad (\nabla_X \phi) Y = g(X + hX, Y) \xi - \eta(Y)(X + hX).$$

**Lemma 2** ([4]). A 3-dimensional contact Riemannian manifold is Sasakian if and only if h = 0.

From (2.6) and (3.1) we compute

(3.2) 
$$R(X,Y)\xi = \eta(Y)(X+hX) - \eta(X)(Y+hY) + \phi((\nabla_Y h)X - (\nabla_X h)Y)$$
 for all vector fields  $X$  and  $Y$ .

Proof of Theorem A. First of all, we recall that the curvature tensor R of a 3-dimensional Riemannian manifold is expressed by

(3.3) 
$$R(X,Y)Z = \rho(Y,Z)X - \rho(X,Z)Y + g(Y,Z)SX - g(X,Z)SY - \frac{\tau}{2}\{g(Y,Z)X - g(X,Z)Y\}$$

for all vector fields X,Y,Z, where  $\rho(X,Y)=g(SX,Y)$  and  $\tau$  is the scalar curvature of the manifold. Let  $M=(M^3;\eta,g,\phi,\xi)$  be a 3-dimensional H-contact manifold whose Ricci tensor S is  $\eta$ -parallel. If h=0 on M, then from Lemma 2 we see that M is Sasakian. Moreover, by Proposition 1 we see that M is locally  $\phi$ -symmetric. From now we suppose that M is non-Sasakian, that is, h is not identically zero on M. Let W be the subset of M on which the number of distinct eigenvalues of h is constant. Then W is an open and dense subset of M. We fix any point q in W. Then from (2.2) there exist a positive function  $\lambda$  and a local orthonormal frame field  $\{e_1,e_2=\phi e_1,e_3=\xi\}$  on a neighborhood  $N(q)(\subset W)$  containing q such that  $he_1=\lambda e_1$ ,  $he_2=-\lambda e_2$ ,  $h\xi=0$ . We denote  $\Gamma_{ijk}=g(\nabla_{e_i}e_j,e_k)$ ,  $\rho_{ij}=\rho(e_i,e_j)$ ,  $\nabla_i\rho_{jk}=(\nabla_{e_i}\rho)(e_j,e_k)$  and  $\nabla_h R_{ijkl}=g((\nabla_{e_h}R)(e_i,e_j)e_k,e_l)$  for h,i,j,k,l=1,2,3. Then from (2.3) we get

(3.4) 
$$\Gamma_{132} = -\Gamma_{123} = -(1+\lambda), \quad \Gamma_{231} = -\Gamma_{213} = 1-\lambda$$

and

$$\Gamma_{131} = \Gamma_{113} = \Gamma_{232} = \Gamma_{223} = 0.$$

Also, from (2.5) and taking account of (2.4) and (3.3), we have

$$\xi(\lambda) = \rho_{12}$$

and

$$(3.7) 4\lambda\Gamma_{312} = \rho_{22} - \rho_{11}.$$

The above general setting and general formulas (3.4)-(3.7) for a 3-dimensional contact metric manifold are referred to [4]. Since  $S\xi = \sigma \xi$ , we have

$$\rho_{13} = \rho_{31} = 0, \ \rho_{23} = \rho_{32} = 0.$$

From (3.5) and (3.8) we have

$$\nabla_3 \rho_{13} = \nabla_3 \rho_{31} = 0, \ \nabla_3 \rho_{23} = \nabla_3 \rho_{32} = 0.$$

Since M has  $\eta$ -parallel Ricci tensor, we have

$$(3.10) \nabla_a \rho_{bc} = 0$$

for  $a, b, c = \{1, 2\}.$ 

On the other hand, applying the second Bianchi identity in (3.3), we have

$$(3.11) 2\nabla_2\rho_{12} + 2\nabla_3\rho_{13} + \nabla_1\rho_{11} - \nabla_1\rho_{22} - \nabla_1\rho_{33} = 0,$$

$$(3.12) 2\nabla_1\rho_{21} + 2\nabla_3\rho_{23} - \nabla_2\rho_{11} + \nabla_2\rho_{22} - \nabla_2\rho_{33} = 0.$$

From (3.9), (3.10), (3.11) and (3.12), we have

$$\nabla_1 \rho_{33} = \nabla_2 \rho_{33} = 0.$$

Since  $\rho_{33} = 2 - 2\lambda^2$ , together with (3.5) and (3.8) we see that  $e_1(\lambda) = e_2(\lambda) = 0$ . So,

(3.13) 
$$0 = [e_1, e_2](\lambda)$$
$$= \eta([e_1, e_2])(\xi \lambda)$$
$$= 2d\eta(e_1, e_2)(\xi \lambda),$$

which yields that  $\xi(\lambda) = 0$ . Hence, since M is connected, we find that  $\lambda$  is a constant on M. And from (3.6) we obtain

$$(3.14) \rho_{12} = \rho_{21} = 0.$$

From (3.14) by using (3.8) and (3.10) we obtain

$$\nabla_1 \rho_{12} = \Gamma_{112}(\rho_{11} - \rho_{22}) = 0$$

and

(3.16) 
$$\nabla_2 \rho_{12} = \Gamma_{221}(\rho_{22} - \rho_{11}) = 0.$$

We now set  $N(q) = N^0(q) \cup N^1(q)$ , where  $N^0 = \{p \in N(q) \mid \rho_{11}(p) = \rho_{22}(p)\}$  and  $N^1 = \{p \in N(q) \mid \rho_{11}(p) \neq \rho_{22}(p)\}$ . Here we divide our arguments into three cases: (I)  $N = N^0$ , (II)  $N = N^1$ , or (III)  $N^0$  and  $N^1$  respectively have interior points.

(I)  $N = N^0$ ; Then  $\rho_{11} = \rho_{22}$  on N. Then since  $\lambda \neq 0$  from (3.7) we get

$$\Gamma_{312} = \Gamma_{321} = 0.$$

Taking account of (3.8) we get  $R(e_1, e_2)\xi = 0$  in (3.3). Hence, by using (3.2) we have

$$\Gamma_{212}e_2 - \Gamma_{121}e_1 = 0.$$

From (3.18) we get

$$\Gamma_{212} = \Gamma_{221} = \Gamma_{121} = \Gamma_{112} = 0.$$

Thus, together with (3.4), (3.5), (3.17) and (3.19), we have

$$(3.20) [e_1, e_2] = 2e_3, [e_2, e_3] = (1 - \lambda)e_1, [e_3, e_1] = (1 + \lambda)e_2.$$

Then due to J. Milnor's classification for 3-dimensional Lie groups admitting unimodular Lie algebra with left invariant metric ([7]), we see that M is locally isometric to one of the following:

- (i) SU(2) (or SO(3)) with a left invariant metric when  $0 < \lambda < 1$ ;
- (ii)  $SL(2,\mathbb{R})$  (or O(1,2)) with a left invariant metric when  $\lambda > 1$ ;
- (iii) the group E(2) of rigid motions of the Euclidean 2-space when  $\lambda = 1$ .

In fact, if  $\lambda = 1$ , then from (3.4), (3.5), (3.17), (3.19) and (3.20) we find that R = 0.

(II)  $N=N^1;$  First, we show  $\rho_{22}-\rho_{11}$  is constant. From (3.15) and (3.16) we get

$$\Gamma_{212} = \Gamma_{221} = \Gamma_{121} = \Gamma_{112} = 0.$$

Since S is  $\eta$ -parallel, from (3.14) and (3.10) we see that  $e_1(\rho_{22}-\rho_{11})=e_2(\rho_{22}-\rho_{11})=0$ , and further from (3.7) we find that

(3.21) 
$$e_1(\Gamma_{312}) = e_2(\Gamma_{312}) = 0.$$

Together with (3.4), (3.5) and (3.21) we calculate

(3.22) 
$$R(e_1, e_2)e_1 = \nabla_{e_1}(\nabla_{e_2}e_1) - \nabla_{e_2}(\nabla_{e_1}e_1) - \nabla_{[e_1, e_2]}e_1$$
$$= (1 + \lambda)(1 - \lambda)e_2 - 2\Gamma_{312}e_2,$$

(3.23) 
$$R(e_1, e_2)e_2 = \nabla_{e_1}(\nabla_{e_2}e_2) - \nabla_{e_2}(\nabla_{e_1}e_2) - \nabla_{[e_1, e_2]}e_2 = -(1+\lambda)(1-\lambda)e_1 + 2\Gamma_{312}e_1,$$

and

(3.24) 
$$R(e_3, e_1)e_1 = \nabla_{e_3}(\nabla_{e_1}e_1) - \nabla_{e_1}(\nabla_{e_3}e_1) - \nabla_{[e_3, e_1]}e_1 \\ = -\Gamma_{312}(1+\lambda)e_3 + (\Gamma_{312}+1+\lambda)(1-\lambda)e_3,$$

(3.25) 
$$R(e_3, e_1)e_3 = \nabla_{e_3}(\nabla_{e_1}e_3) - \nabla_{e_1}(\nabla_{e_3}e_3) - \nabla_{[e_3, e_1]}e_3 = \Gamma_{312}(1+\lambda)e_1 - (\Gamma_{312}+1+\lambda)(1-\lambda)e_1,$$

and similarly we obtain

$$(3.26) R(e_1, e_2)e_3 = R(e_2, e_3)e_1 = R(e_3, e_1)e_2 = 0.$$

Moreover, together with (3.22), (3.23), (3.24), (3.25) and (3.26) we have

$$(\nabla_{e_3} R)(e_1, e_2)e_1 = -2e_3(\Gamma_{312})e_2,$$
  
$$(\nabla_{e_1} R)(e_2, e_3)e_1 = (\nabla_{e_2} R)(e_3, e_1)e_1 = 0.$$

Thus, by the 2nd Bianchi identity, we have  $e_3(\Gamma_{312}) = 0$ , and hence with (3.21) we see that  $\Gamma_{312}$  is constant. From (3.7), we further see that  $\rho_{22} - \rho_{11}$  is constant. After all, together with (3.4), (3.5) we have

$$(3.27) \quad [e_1, e_2] = 2e_3, \ [e_2, e_3] = (1 - \lambda + \Gamma_{312})e_1, \ [e_3, e_1] = (1 + \lambda + \Gamma_{312})e_2.$$

By similar arguments as in the first case, we see that M is locally isometric to one of the following:

- (i) SU(2) (or SO(3)) with a left invariant metric when  $1 + \Gamma_{312} > \lambda$ ;
- (ii)  $SL(2,\mathbb{R})$  (or O(1,2)) with a left invariant metric when  $-\lambda < 1+\Gamma_{312} < \lambda$  or  $1+\Gamma_{312} < -\lambda$ ;
  - (iii) E(2) with a left invariant metric when  $1 + \Gamma_{312} = \lambda$ ;
- (iv) the group E(1,1) of rigid motions of Minkowski 2-space with a left invariant metric when  $1 + \Gamma_{312} = -\lambda$ .
- (III)  $N^0$  and  $N^1$  respectively have interior points; In view of the above cases (I) and (II), by the continuity of  $\rho_{22} \rho_{11}$  we see that this case cannot occur.

Conversely, since a Sasakian manifold is H-contact, due to Proposition 1 we see that a Sasakian locally  $\phi$ -symmetric space is H-contact and it has  $\eta$ -parallel Ricci tensor. Now, we consider a 3-dimensional Lie group with the Lie algebra structure

$$(3.28) [e_1, e_2] = c_1 e_3, [e_2, e_3] = c_2 e_1, [e_3, e_1] = c_3 e_2$$

for some constants  $c_1(\neq 0), c_2, c_3$ . Let  $\{\omega_i\}$  be the dual 1-forms to the vector fields  $\{e_i\}$ . By using (3.28) we get  $d\omega_3(e_1, e_2) = -d\omega_3(e_2, e_1) = -\frac{c_1}{2}$  and  $d\omega_3(e_i, e_j) = 0$  for  $(i, j) \neq (1, 2), (2, 1)$ . Further we easily check that  $\omega_3 \wedge d\omega_3(e_1, e_2, e_3) = -\frac{c_1}{6}(\neq 0)$ , and hence  $\omega_3$  is a contact form and  $e_3$  is the Reeb vector field. Define a Riemannian metric g and a (1,1)-tensor field  $\phi$  by

$$g(e_i, e_j) = \delta_{ij}, \ d\omega_3(e_i, e_j) = g(e_i, \phi e_j)$$

for i, j = 1, 2, 3. Then, for  $(\omega_3, g, \phi, e_3)$  to be a contact Riemannian structure, it must follow that  $g(\phi e_i, \phi e_j) = g(e_i, e_j) - \omega_3(e_i)\omega_3(e_j)$  for i, j = 1, 2, 3, and hence we have  $c_1 = 2$ .

Recall the Koszul formula

$$2g(\nabla_X Y, Z) = Xg(Y, Z) + Yg(Z, X) - Zg(X, Y) + g(Y, [Z, X]) + g(Z, [X, Y]) - g(X, [Y, Z])$$

for X, Y, Z are smooth vector fields on the manifold. We put

$$\Gamma_{ijk} = g \left( \nabla_{e_i} e_j, e_k \right) \quad \text{for} \quad i, j, k = 1, 2, 3.$$

Then together with (3.28) we obtain

(3.29) 
$$\begin{cases} \Gamma_{123} = \frac{1}{2}(c_3 - c_2 + 2), \\ \Gamma_{213} = \frac{1}{2}(c_3 - c_2 - 2), \\ \Gamma_{312} = \frac{1}{2}(c_3 + c_2 - 2), \\ \text{all others are zero.} \end{cases}$$

From (3.29) we have

$$Se_1 = \left(\frac{1}{2}(c_2^2 - c_3^2) - 2 + 2c_3\right)e_1,$$

$$Se_2 = \left(\frac{1}{2}(c_3^2 - c_2^2) - 2 + 2c_2\right)e_2,$$

$$Se_3 = \left(-\frac{1}{2}(c_2 - c_3)^2 + 2\right)e_3.$$

That is, a 3-dimensional unimodular Lie group with left invariant contact metric structure is a H-contact manifold. Moreover, from (3.29) and (3.30) we can show that S is  $\eta$ -parallel, that is,  $\nabla_a \rho_{bc} = 0$  for a, b = 1, 2.

Therefore, summing up all the arguments so far and using the continuity argument of  $\lambda$ , then we have our Theorem A.

Perrone [8] classified all simply connected homogeneous contact Riemannian 3-manifolds. Recall that M is called unimodular if its left invariant Haar measure is also right invariant. In terms of the Lie algebra  $\mathfrak{m}$ , M is unimodular if and only if the adjoint transformation  $ad_X$  has trace zero for every  $X \in \mathfrak{m}$ .

# 4. Remarks

We remark that there are lots of H-contact 3-manifolds which do not satisfy  $\nabla_{\xi}h = \mu h \phi$  ( $\mu \in \mathbb{R}$ ) (cf. [6]). Actually, there is no inclusion relation between the class of H-contact 3-manifolds and the class of contact 3-manifolds which satisfy  $\nabla_{\xi}h = \mu h \phi$ . In this section, we show a homogeneous example and a non-homogeneous example which satisfy the condition  $\nabla_{\xi}h = \mu h \phi$  ( $\mu \in \mathbb{R}$ ), but they are not H-contact (cf. [5]).

**Example 1.** Let M be a 3-dimensional non-unimodular Lie group with left invariant contact metric structure. Then we know that there exists an orthonormal basis  $\{e_1, e_2 = \varphi e_1, e_3 = \xi\} \in \mathfrak{m}$  such that

$$[e_1, e_2] = \alpha e_2 + 2e_3, \ [e_2, e_3] = 0, \ [e_3, e_1] = \gamma e_2,$$

where  $\alpha \neq 0$ . Moreover, M is Sasakian if and only if  $\gamma = 0$  (cf. [8]). From (4.1), by using the Koszul formula we have

$$\begin{cases} \Gamma_{123} = \frac{\gamma+2}{2}, \\ \Gamma_{212} = -\alpha, \\ \Gamma_{213} = \frac{\gamma-2}{2}, \\ \Gamma_{312} = \frac{\gamma-2}{2}, \\ \text{all others are zero.} \end{cases}$$

From (4.2), we have the Ricci tensor

$$Se_1 = \left(-\alpha^2 - 2 + 2\gamma - \frac{\gamma^2}{2}\right)e_1,$$

$$Se_2 = \left(-\alpha^2 - 2 + \frac{\gamma^2}{2}\right)e_2 + \alpha\gamma e_3,$$

$$Se_3 = \alpha\gamma e_2 + \left(2 - \frac{\gamma^2}{2}\right)e_3.$$

Moreover, from (4.2) we have

(4.4) 
$$he_1 = \gamma/2e_1, \quad he_2 = -\gamma/2e_2.$$

From (4.2) and (4.4), we see that  $\nabla_{\xi} h = (2 - \gamma)h\phi$ .

Modifying Perrone's example in [9], then we have a following example.

**Example 2.** Let M be the open submanifold  $\{(x,y,z) \in \mathbf{R}^3 \mid x \neq 0\}$  of Cartesian 3-space together with a contact form  $\eta = xydx + dz$ . The characteristic vector field of this contact 3-manifold is  $\xi = \partial/\partial z$ . For  $\beta \in \mathbb{R}$ , take a global frame field

$$e_1 = -\frac{2}{x}\frac{\partial}{\partial y}, \ e_2 = \frac{\partial}{\partial x} - \frac{\beta z}{x}\frac{\partial}{\partial y} - xy\frac{\partial}{\partial z}, \ e_3 = \xi.$$

Then  $\{e_1, e_2\}$  generates the contact distribution, and the vector fields  $e_1, e_2, e_3$  satisfy

$$[e_3, e_1] = 0, \quad [e_2, e_3] = -\frac{\beta}{2}e_1, \quad [e_1, e_2] = 2e_3 + \frac{1}{r}e_1.$$

Define a Riemannian metric g with respect to  $\{e_1,e_2,e_3\}$  to be an orthonormal frame. Moreover, define an endomorphism field  $\phi$  by  $\phi e_1=e_2, \ \phi e_2=-e_1$  and  $\phi \xi=0.$   $(g,\phi,\xi)$  is an associated almost contact metric structure for  $\eta$ . The endomorphism field h satisfies  $he_1=\frac{\beta}{4}e_1, \ he_2=-\frac{\beta}{4}e_2$ . Hence, M is Sasakian if and only if  $\beta=0$ . Perrone's example in [9] is just the case  $\beta=4$ . We compute that

$$\nabla_{\xi} h = (2 + \frac{\beta}{2})h\phi.$$

From the straightforward computations we have  $S\xi = -\frac{\beta}{2x}e_1 + 2(1 - \frac{\beta^2}{16})\xi$ . From this, we see at once that M is H-contact if and only if  $\beta = 0$  (M is Sasakian). Furthermore, we note that M has  $\eta$ -parallel curvature tensor, that is, M is weakly  $\phi$ -symmetric in the sense of [9] if and only if  $\beta = 4$ .

**Acknowledgement.** This research was supported by Basic Science Research Program through the National Research Foundation of Korea(NRF) funded by the Ministry of Education, Science and Technology (2016R1D1A1B03930756).

### References

- [1] D. E. Blair, Riemannian Geometry of Contact and Symplectic Manifolds, second edition, Progress in Mathematics, 203, Birkhäuser Boston, Inc., Boston, MA, 2010.
- [2] D. E. Blair and R. Sharma, Three-dimensional locally symmetric contact metric manifolds, Boll. Un. Mat. Ital. A (7) 4 (1990), no. 3, 385–390.
- [3] E. Boeckx and J. T. Cho, Locally symmetric contact metric manifolds, Monatsh. Math. 148 (2006), no. 4, 269–281.
- [4] J. T. Cho and J.-E. Lee, η-parallel contact 3-manifolds, Bull. Korean Math. Soc. 46 (2009), no. 3, 577–589.
- [5] J. T. Cho and D.-H. Yang, Conformally flat contact three-manifolds, J. Aust. Math. Soc. 103 (2017), no. 2, 177–189.
- [6] T. Koufogiorgos, M. Markellos, and V. J. Papantoniou, The harmonicity of the Reeb vector field on contact metric 3-manifolds, Pacific J. Math. 234 (2008), no. 2, 325–344.
- [7] J. Milnor, Curvatures of left invariant metrics on Lie groups, Advances in Math. 21 (1976), no. 3, 293–329.
- [8] D. Perrone, Homogeneous contact Riemannian three-manifolds, Illinois J. Math. 42 (1998), no. 2, 243–256.
- [9] \_\_\_\_\_\_, Weakly \( \phi\)-symmetric contact metric spaces, Balkan J. Geom. Appl. 7 (2002), no. 2, 67–77.
- [10] \_\_\_\_\_\_, Contact metric manifolds whose characteristic vector field is a harmonic vector field, Differential Geom. Appl. 20 (2004), no. 3, 367–378.
- [11] T. Takahashi, Sasakian  $\phi$ -symmetric spaces, Tôhoku Math. J. (2) **29** (1977), no. 1, 91–113.
- [12] S. Tanno, Variational problems on contact Riemannian manifolds, Trans. Amer. Math. Soc. 314 (1989), no. 1, 349–379.

JONG TAEK CHO
DEPARTMENT OF MATHEMATICS
CHONNAM NATIONAL UNIVERSITY
GWANGJU 61186, KOREA

Email address: jtcho@chonnam.ac.kr