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n-PARALLEL H-CONTACT 3-MANIFOLDS

JoNG TAEk CHO

ABSTRACT. In this paper, we give a local and global classification of 3-
dimensional H-contact manifolds whose Ricci tensor is n-parallel.

1. Introduction

Boeckx and the present author [3] proved that a locally symmetric contact
Riemannian manifold is either Sasakian and of constant curvature 1 or locally
isometric to the unit tangent sphere bundle (with its standard contact metric
structure) of a Euclidean space. We may also refer to [2] for the 3-dimensional
case. This result says that Cartan’s local symmetry (VR = 0) is quite a strong
condition in contact Riemannian geometry, where R denotes the Riemannian
curvature tensor. In this context, a weaker condition called n-parallelism is
introduced. For a contact Riemannian manifold M = (M;n, g, ¢, &), the contact
form n determines the contact distribution D which is given by the kernel of .
We say that the Ricci tensor S is n-parallel if S satisfies g((VxS)Y,Z) =0
for any X,Y,Z € D. In this paper, we shall study 3-dimensional contact
Riemannian manifolds whose Ricci tensor is n-parallel. In a previous paper [4],
Lee and the present author gave a classification of such contact 3-manifolds
under the condition Veh = phe, where p € R and h = §L¢¢.

On the other hand, Perrone ([10]) introduced a so-called H-contact structure,
which means that the Reeb vector field £ is a harmonic vector field. In the same
paper, it was proved that a contact Riemannian manifold is H-contact if and
only if ¢ is an eigenvector of the Ricci operator S, that is, S§ = a& for some
function «. In the present paper, we give a local and global classification of H-
contact 3-manifolds whose Ricci tensor is n-parallel. More precisely, we prove
that:

Theorem A (local classification). Let M be a 3-dimensional H-contact mani-
fold. Then the Ricci tensor S is n-parallel if and only if M is locally isometric
to one of the following:

(1) a Sasakian ¢-symmetric space;
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(2) SU(2) (or SO(3)), SL(2,R) (or O(1,2)), E(2) (the group of rigid mo-
tions of Euclidean 2-space) including a flat manifold, E(1,1) (the group of rigid
motions of Minkowski 2-space) with a left invariant contact metric structure,
respectively.

In [11] the authors gave a classification of a 3-dimensional Sasakian ¢-
symmetric space (complete and simply connected Sasakian locally ¢-symmetric
space). Together with this we have:

Theorem B (global classification). Let M be a complete and simply connected
3-dimensional H-contact manifold. Then S is n-parallel if and only if M is
isometric to one of the following:

(1) the standard unit sphere S®; SU(2), SL(2,R) (the universal covering
of SL(2,R)) or the Heisenberg group H with a left invariant Sasakian metric,
respectively;

(2) SU(2), SL(2,R), E(2), E(1,1) with a left invariant contact metric struc-
ture, respectively.

At the end of Section 4, we remark the relationship between the H-contact
condition and the condition V¢h = phe (1 € R).

The author would like to thank the referee for his/her careful reading of the
manuscript.

2. Preliminaries

All manifolds in the present paper are assumed to be connected and of class
C*. First, we give a brief review of some fundamental facts and formulas on
contact manifolds, which will be used later. We may also refer to [4]. A (2n+1)-
dimensional manifold M?"*+! is said to be a contact manifold if it admits a
global 1-form 7 such that n A (dn)™ # 0 everywhere. Given a contact form 7,
we have a unique vector field &, which is called the Reeb vector field, satisfying
n(€) =1 and L¢n =0 (or éedn = 0), where L¢ denotes Lie differentiation for £
and 7¢ denotes the interior product operator by {. Then we have a Riemannian
metric g and a (1, 1)-tensor field ¢ such that

21 n(X)=9(X,8), dn(X,Y)=g(X,8Y), ¢X=—-X+n(X),

where X and Y are vector fields on M. A Riemannian manifold M equipped
with structure tensors (1, g, ¢, ) satisfying (2.1) is said to be a contact Rieman-
nian manifold and is denoted by M = (M;n, g, ¢, ). For a contact Riemannian
manifold M, we define a (1,1)-tensor field h by h = 1L¢$. Then we may
observe that h is self-adjoint and satisfies

(2.2) hé =0 and h¢ = —¢h,
(2.3) Vx&=—¢X — ¢hX,

where V is Levi-Civita connection. From (2.2) and (2.3) we see that each
trajectory of £ is a geodesic. Along a trajectory of &, the Jacobi operator



n-PARALLEL H-CONTACT 3-MANIFOLDS 1015

¢ = R(-,£)& is a symmetric (1, 1)-tensor field, where R denotes the Riemannian
curvature tensor. We have

(2.4) trace £ = g(S¢, &) = 2n — trace (h?),
(2.5) Veh = ¢ — ol — ¢h?,

(26)  9(R(X,Y)E, 2) = 9g((V29) X, Y) + g((Vyoh) X — (Vx¢h)Y, Z)

for all vector fields X,Y, Z on M, where S is the Ricci tensor field of type (1,1).

A contact Riemannian manifold for which ¢ is Killing is called a K-contact
manifold. It is easy to see that a contact Riemannian manifold is K-contact if
and only if h = 0. Moreover, we find that for a K-contact manifold S = 2n€,
from which we see that a K-contact manifold admits already an H-contact
structure, which means that the Reeb vector field £ is a harmonic vector field
(see, [10]). For a contact Riemannian manifold M one may define naturally
an almost complex structure J on M x R. If the almost complex structure
J is integrable, M is said to be normal or Sasakian. A Sasakian manifold is
characterized by a condition

(2.7) R(X,Y)¢ = (V)X — n(X)Y

for all vector fields X and Y. For more details about contact Riemannian
manifolds, we refer to [1].

For a contact Riemannian manifold M, the tangent space T,M of M at
each point p € M is decomposed as T,M = D, & {{},(direct sum), where we
denote D, = {v € T,M |n(v) = 0}. Then D : p — D, defines a distribution
orthogonal to &, which is called the contact distribution.

Definition 1 ([4]). A contact Riemannian manifold M = (M;n, g, $,§) is said
to have an n-parallel Ricci tensor if g((VyS)V,W) = 0 for all vector fields
U,V,W € D.

A Sasakian manifold M = (M;n, g, ¢,&) is said to be locally ¢-symmetric if
M satisfies
#*(VyR)(X,Y)Z =0
for all vector fields V, X,Y, Z € D ([11]). Then we have:

Proposition 1. Let M = (M;n,g,9,£) be a Sasakian manifold. If M is
locally ¢-symmetric, then M has an n-parallel Ricci tensor. In dimension 3,
the converse also holds.

Proof. For a Sasakian manifold M, we compute
(Vup)(V. W) = g(VuR)(EVIW,&) + Y g((VuR)(e:, V)W, e;)
i=1

(2.8)

n

+ Z g((VuR)(¢e;, V)W, ¢e;)

i=1
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for any adapted orthonormal basis {¢, e;, pe;} (i = 1,2,...,n). From (2.3) and
(2.7), we obtain g((VyR)(&, VYW, &) =0 for U, V,W € D. Thus, from (2.8) we
find that a Sasakian locally ¢-symmetric space has an n-parallel Ricci tensor.
For the dimension 3, it is well-known that the curvature tensor R is expressed
only in terms of the Ricci tensor S, the metric tensor g and the scalar curvature
7 (see (3.3)). Then, since S = 2¢, we see that an n-parallelism of Ricci tensor
implies a local ¢-symmetry. O

3. m-parallel contact 3-manifolds

In this section, we prove Theorem A. For a 3-dimensional contact Riemann-
ian manifold M, it is known that the associated almost CR-structure is inte-
grable. Then we have (cf. [12])

(3.1) (Vxo)Y = g(X + hX, V)¢ —n(Y)(X + hX).

Lemma 2 ([4]). A 3-dimensional contact Riemannian manifold is Sasakian if

and only if h = 0.

From (2.6) and (3.1) we compute
(3.2) R(X,Y)E = n(¥)(X +hX) = n(X)(Y +hY) + 6((Vy W)X — (Vxh)Y)
for all vector fields X and Y.

Proof of Theorem A. First of all, we recall that the curvature tensor R of a
3-dimensional Riemannian manifold is expressed by

R(X,Y)Z = p(Y, Z)X — p(X, 2)Y + g(Y, Z)SX — g(X, Z)SY

(3.3) _ %{g(y, Z)X —g(X,Z2)Y}

for all vector fields X,Y,Z, where p(X,Y) = g(SX,Y) and 7 is the scalar
curvature of the manifold. Let M = (M3;7,g,¢,&) be a 3-dimensional H-
contact manifold whose Ricci tensor S is n-parallel. If h = 0 on M, then
from Lemma 2 we see that M is Sasakian. Moreover, by Proposition 1 we see
that M is locally ¢-symmetric. From now we suppose that M is non-Sasakian,
that is, h is not identically zero on M. Let W be the subset of M on which
the number of distinct eigenvalues of h is constant. Then W is an open and
dense subset of M. We fix any point ¢ in W. Then from (2.2) there exist a
positive function A and a local orthonormal frame field {e1,es = deq,e3 = &}
on a neighborhood N(q)(C W) containing ¢ such that he; = Xey, hea = —ea,
h& = 0. We denote I';j;, = g(Ve,e5,€x), pij = plei,e;), Vipjx = (Ve,p)(€j, ex)
and VR = 9((Ve, R)(ei,ej)ex, e;) for h,i,5,k,1 =1,2,3. Then from (2.3)
we get

(3.4) Pz =—Tiog3 = —(1+A), Taz1=-Toz=1-2A
and

(3.5) iz =Tiig = Taga = oo = 0.
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Also, from (2.5) and taking account of (2.4) and (3.3), we have

(3.6) §(N) = p12
and
(3.7) 4A\'312 = p22 — p11-

The above general setting and general formulas (3.4)-(3.7) for a 3-dimensional
contact metric manifold are referred to [4]. Since S¢ = o§, we have

(3.8) p13 = p31 =0, paz = p32 = 0.
From (3.5) and (3.8) we have

(3.9) Vsp1s = Viaps1 =0, Vgpaz = Vipze = 0.
Since M has n-parallel Ricci tensor, we have

(3.10) Vppe =0

for a,b,c = {1,2}.
On the other hand, applying the second Bianchi identity in (3.3), we have

(3.11) 2Vap12 +2V3p13 + Vipi1r — Vipas — Vipsz =0,

(3.12) 2V1p21 + 2V3paz — Vapir + Vapas — Vapss = 0.
From (3.9), (3.10), (3.11) and (3.12), we have
Vipsz = Vapzz = 0.

Since p33 = 2—2\?2, together with (3.5) and (3.8) we see that e1()\) = ez(A\) = 0.
So,

0 = [e1, ea](N)
(3.13) = n([e1, e2])(€N)
= 2dn(e1, e2)(EN),

which yields that £(A) = 0. Hence, since M is connected, we find that X is a
constant on M. And from (3.6) we obtain

(3.14) p12 = p21 = 0.

From (3.14) by using (3.8) and (3.10) we obtain
(3.15) Vipiz = Tii2(p11 — p22) =0
and

(3.16) Vapiz = a21(p22 — p11) = 0.

We now set N(q) = N%(q) UN'(q), where N” = {p € N(q) | p11(p) = p22(p)}
and N = {p € N(q)|p11(p) # p22(p)}. Here we divide our arguments into
three cases: (I) N = N°, (II) N = N', or (IIT) N° and N* respectively have
interior points.
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(I) N = N Then p11; = paa on N. Then since A # 0 from (3.7) we get
(3.17) F312 - F321 - 0.

Taking account of (3.8) we get R(e1,e2)¢ = 0 in (3.3). Hence, by using (3.2)
we have

(3.18) T'y10e0 — 12161 = 0.

From (3.18) we get

(3.19) Fo12 =T991 = T2 =112 = 0.

Thus, together with (3.4), (3.5), (3.17) and (3.19), we have

(3.20) [e1, ea] = 2es3, [ea,e3] = (1 — Aex, [es,e1] = (1 + Aes.

Then due to J. Milnor’s classification for 3-dimensional Lie groups admitting
unimodular Lie algebra with left invariant metric ([7]), we see that M is locally
isometric to one of the following;:

(i) SU(2) (or SO(3)) with a left invariant metric when 0 < A < 1;

(if) SL(2,R) (or O(1,2)) with a left invariant metric when A\ > 1;

(iii) the group E(2) of rigid motions of the Euclidean 2-space when A = 1.

In fact, if A = 1, then from (3.4), (3.5), (3.17), (3.19) and (3.20) we find that
R=0.
(II) N = N*; First, we show pga — p11 is constant. From (3.15) and (3.16) we
get

o1z =T'g21 = T'121 =112 = 0.

Since S is n-parallel, from (3.14) and (3.10) we see that e (p22 —p11) = €2(p22 —
p11) = 0, and further from (3.7) we find that

(3.21) e1(I's12) = e2(I's12) = 0.
Together with (3.4), (3.5) and (3.21) we calculate
R(ela 62)61 = vel (vezel) - v€2 (velel) - V[e1,€2]61

3.22
(322) = (L+ ) (1 —XNeg — 2T'312€e2,
(3 23) R(ela 62)62 = v51 (v(ize?) - veQ (veleZ) - V[ehez]eQ
) - _(1 + /\)(1 - /\)61 + 21—‘31261,
and
(3.24) R(e?” 61)@1 = Ve, (V51€1) — Ve, (Vesel) - V[e3,el]€1
. = —T312(1 + Nes + (Iziz + 14+ A)(1 — Nes,
(3.25) R(es,e1)es = Vey(Ve,e3) = Ve, (Veses) = Vi, ei1€3

=T312(1+ ANex — Tz12 + 1+ A)(1 = Neq,

and similarly we obtain

(326) R(@l, 62)63 = R(CQ, 63)61 = R(eg, 61)62 = 0.
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Moreover, together with (3.22), (3.23), (3.24), (3.25) and (3.26) we have

(Ves R)(e1,e2)er = —2e3(I'312)e,
(Ve,R) (e, e3)er = (Ve, R)(e3,e1)e; = 0.

Thus, by the 2nd Bianchi identity, we have e3(I's12) = 0, and hence with (3.21)
we see that I'sio is constant. From (3.7), we further see that pos — p17 is
constant. After all, together with (3.4), (3.5) we have

(327) [61, 62} = 2eg, [62, 63] = (1 — A+ F312)€1, [637 61} = (1 + A+ F312)€2.

By similar arguments as in the first case, we see that M is locally isometric to
one of the following:

(i) SU(2) (or SO(3)) with a left invariant metric when 1+ I'310 > X;

(if) SL(2,R) (or O(1,2)) with a left invariant metric when —A < 1+T'310 < A
or 14+1I'310 < =\

(iii) E(2) with a left invariant metric when 14 T'sjo = A;

(iv) the group E(1,1) of rigid motions of Minkowski 2-space with a left
invariant metric when 1+ I's;9 = —A.

(IIT) N° and N! respectively have interior points; In view of the above cases
(I) and (II), by the continuity of pas — p11 we see that this case cannot occur.

Conversely, since a Sasakian manifold is H-contact, due to Proposition 1 we
see that a Sasakian locally ¢-symmetric space is H-contact and it has n-parallel
Ricci tensor. Now, we consider a 3-dimensional Lie group with the Lie algebra
structure

(3~28) [elan] = C1€3, [62763] - e [63761] = C3€2

for some constants c;(# 0), c2,c3. Let {w;} be the dual 1-forms to the vector

fields {e;}. By using (3.28) we get dws(ei,ez) = —dws(ez,e1) = —% and
dws(e;,e;) = 0 for (4,5) # (1,2),(2,1). Further we easily check that ws A
dws(e1,ez,e3) = —F(# 0), and hence w3 is a contact form and e3 is the Reeb

vector field. Define a Riemannian metric g and a (1,1)-tensor field ¢ by
glei,ej) = 0ij, dws(ei,e;) = g(ei, pe;)

for 4,5 = 1,2,3. Then, for (w3, g, @, e3) to be a contact Riemannian structure,
it must follow that g(¢e;, de;) = g(ei, e;) —ws(e;)ws(e;) for 4,5 = 1,2,3, and
hence we have ¢; = 2.

Recall the Koszul formula

29(VxY,2) = Xg(Y,Z)+Yg(Z,X) — Zg(X,Y)
+9(Y,[Z,X]) +9(Z,[X,Y]) = g(X, [V, Z])
for X, Y, Z are smooth vector fields on the manifold. We put
Lijk =9 (Veej, ex) for 4,4, k=1, 2, 3.
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Then together with (3.28) we obtain

1
o3 = 5(83 —c2+2),

1

I = - —cy — 2
(3.29) 213 2(03 C2 ),

1
312 = 5(03 +c —2),

all others are zero.

From (3.29) we have

n
D
-
|
—

(c3 —c3) — 2+ 2c3)en,

DN = N =

(3.30)

"
N

—~

(c3 —c3) — 24 2c2)e,
1
Ses = ( — 5(02 —c3)® + 2)63.

That is, a 3-dimensional unimodular Lie group with left invariant contact met-
ric structure is a H-contact manifold. Moreover, from (3.29) and (3.30) we can
show that S is n-parallel, that is, V,ppc = 0 for a,b =1, 2.

Therefore, summing up all the arguments so far and using the continuity
argument of A, then we have our Theorem A. (I

Perrone [8] classified all simply connected homogeneous contact Riemann-
ian 3-manifolds. Recall that M is called unimodular if its left invariant Haar
measure is also right invariant. In terms of the Lie algebra m, M is unimodular
if and only if the adjoint transformation adx has trace zero for every X € m.

4. Remarks

We remark that there are lots of H-contact 3-manifolds which do not satisfy
Veh = phe (1 € R) (cf. [6]). Actually, there is no inclusion relation between
the class of H-contact 3-manifolds and the class of contact 3-manifolds which
satisfy V¢h = phe. In this section, we show a homogeneous example and a
non-homogeneous example which satisfy the condition Veh = pho (1 € R),
but they are not H-contact (cf. [5]).

Example 1. Let M be a 3-dimensional non-unimodular Lie group with left
invariant contact metric structure. Then we know that there exists an or-
thonormal basis {e1, es = pe1,e3 = £} € m such that

(4.1) le1, e2] = aeg + 2e3, [ez,e3] =0, [e3,e1] = veq,
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where v # 0. Moreover, M is Sasakian if and only if v = 0 (cf. [8]). From
(4.1), by using the Koszul formula we have

+ 2
o3 = WT?
I212 = —a,
v =2
(4.2) 213 = —
v =2
312 = 5
all others are zero.

From (4.2), we have the Ricci tensor

2
Se; = (—a2 — 242y — é) e1,

2
(4.3) Seg = (—a2 -2+ 72) ez + aryes,
A2
Ses = aryes + <2 - 2) es.

Moreover, from (4.2) we have
(4.4) hey = v/2e1, hes = —v/2es.
From (4.2) and (4.4), we see that Veh = (2 — v)ho.
Modifying Perrone’s example in [9], then we have a following example.

Example 2. Let M be the open submanifold {(z,y, z) € R® | z # 0} of Carte-
sian 3-space together with a contact form 7 = zydz + dz. The characteristic
vector field of this contact 3-manifold is £ = 9/0z. For 8 € R, take a global
frame field

(o 20 0 po 0
1= 2y’ 2= 5, yaz’ 3 =G

Then {e1, e} generates the contact distribution, and the vector fields eq, e, €3
satisfy

1
(45) [637 61} = 0, [62, 63] = 7561, [61, 62] = 263 + 561.

Define a Riemannian metric g with respect to {e1, e2, €3} to be an orthonormal
frame. Moreover, define an endomorphism field ¢ by ¢e; = ez, ¢es = —e; and
¢& = 0. (g,9,¢) is an associated almost contact metric structure for . The
endomorphism field h satisfies he; = gel, hey = —%eg. Hence, M is Sasakian
if and only if 8 = 0. Perrone’s example in [9] is just the case § = 4. We

compute that
Veh =2+ g)hgb.
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From the straightforward computations we have S¢ = —Le + 2(1 — f—;)f

2z

From this, we see at once that M is H-contact if and only if 3 = 0 (M is
Sasakian). Furthermore, we note that M has n-parallel curvature tensor, that

is,

M is weakly ¢-symmetric in the sense of [9] if and only if 8 = 4.

Acknowledgement. This research was supported by Basic Science Research
Program through the National Research Foundation of Korea(NRF) funded by
the Ministry of Education, Science and Technology (2016R1D1A1B03930756).

(1]
2]
3]

(4]

(10]
(11]

(12]

References

D. E. Blair, Riemannian Geometry of Contact and Symplectic Manifolds, second edition,
Progress in Mathematics, 203, Birkh&user Boston, Inc., Boston, MA, 2010.

D. E. Blair and R. Sharma, Three-dimensional locally symmetric contact metric mani-
folds, Boll. Un. Mat. Ital. A (7) 4 (1990), no. 3, 385-390.

E. Boeckx and J. T. Cho, Locally symmetric contact metric manifolds, Monatsh. Math.
148 (2006), no. 4, 269-281.

J. T. Cho and J.-E. Lee, n-parallel contact 3-manifolds, Bull. Korean Math. Soc. 46
(2009), no. 3, 577-589.

J. T. Cho and D.-H. Yang, Conformally flat contact three-manifolds, J. Aust. Math.
Soc. 103 (2017), no. 2, 177-189.

T. Koufogiorgos, M. Markellos, and V. J. Papantoniou, The harmonicity of the Reeb
vector field on contact metric 3-manifolds, Pacific J. Math. 234 (2008), no. 2, 325-344.
J. Milnor, Curvatures of left invariant metrics on Lie groups, Advances in Math. 21
(1976), no. 3, 293-329.

D. Perrone, Homogeneous contact Riemannian three-manifolds, Illinois J. Math. 42
(1998), no. 2, 243-256.

, Weakly ¢-symmetric contact metric spaces, Balkan J. Geom. Appl. 7 (2002),
no. 2, 67-77.

, Contact metric manifolds whose characteristic vector field is a harmonic vector
field, Differential Geom. Appl. 20 (2004), no. 3, 367-378.

T. Takahashi, Sasakian ¢-symmetric spaces, Téhoku Math. J. (2) 29 (1977), no. 1,
91-113.

S. Tanno, Variational problems on contact Riemannian manifolds, Trans. Amer. Math.
Soc. 314 (1989), no. 1, 349-379.

JONG TAEK CHO

DEPARTMENT OF MATHEMATICS
CHONNAM NATIONAL UNIVERSITY
GWANGJU 61186, KOREA

Email address: jtcho@chonnam.ac.kr



