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η-PARALLEL H-CONTACT 3-MANIFOLDS

Jong Taek Cho

Abstract. In this paper, we give a local and global classification of 3-

dimensional H-contact manifolds whose Ricci tensor is η-parallel.

1. Introduction

Boeckx and the present author [3] proved that a locally symmetric contact
Riemannian manifold is either Sasakian and of constant curvature 1 or locally
isometric to the unit tangent sphere bundle (with its standard contact metric
structure) of a Euclidean space. We may also refer to [2] for the 3-dimensional
case. This result says that Cartan’s local symmetry (∇R = 0) is quite a strong
condition in contact Riemannian geometry, where R denotes the Riemannian
curvature tensor. In this context, a weaker condition called η-parallelism is
introduced. For a contact Riemannian manifoldM = (M ; η, g, φ, ξ), the contact
form η determines the contact distribution D which is given by the kernel of η.
We say that the Ricci tensor S is η-parallel if S satisfies g((∇XS)Y,Z) = 0
for any X,Y, Z ∈ D. In this paper, we shall study 3-dimensional contact
Riemannian manifolds whose Ricci tensor is η-parallel. In a previous paper [4],
Lee and the present author gave a classification of such contact 3-manifolds
under the condition ∇ξh = µhφ, where µ ∈ R and h = 1

2Lξφ.
On the other hand, Perrone ([10]) introduced a so-called H-contact structure,

which means that the Reeb vector field ξ is a harmonic vector field. In the same
paper, it was proved that a contact Riemannian manifold is H-contact if and
only if ξ is an eigenvector of the Ricci operator S, that is, Sξ = αξ for some
function α. In the present paper, we give a local and global classification of H-
contact 3-manifolds whose Ricci tensor is η-parallel. More precisely, we prove
that:

Theorem A (local classification). Let M be a 3-dimensional H-contact mani-
fold. Then the Ricci tensor S is η-parallel if and only if M is locally isometric
to one of the following:

(1) a Sasakian φ-symmetric space;
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(2) SU(2) (or SO(3)), SL(2,R) (or O(1, 2)), E(2) (the group of rigid mo-
tions of Euclidean 2-space) including a flat manifold, E(1, 1) (the group of rigid
motions of Minkowski 2-space) with a left invariant contact metric structure,
respectively.

In [11] the authors gave a classification of a 3-dimensional Sasakian φ-
symmetric space (complete and simply connected Sasakian locally φ-symmetric
space). Together with this we have:

Theorem B (global classification). Let M be a complete and simply connected
3-dimensional H-contact manifold. Then S is η-parallel if and only if M is
isometric to one of the following:

(1) the standard unit sphere S3; SU(2), ˜SL(2,R) (the universal covering
of SL(2,R)) or the Heisenberg group H with a left invariant Sasakian metric,
respectively;

(2) SU(2), ˜SL(2,R), Ẽ(2), E(1, 1) with a left invariant contact metric struc-
ture, respectively.

At the end of Section 4, we remark the relationship between the H-contact
condition and the condition ∇ξh = µhφ (µ ∈ R).

The author would like to thank the referee for his/her careful reading of the
manuscript.

2. Preliminaries

All manifolds in the present paper are assumed to be connected and of class
C∞. First, we give a brief review of some fundamental facts and formulas on
contact manifolds, which will be used later. We may also refer to [4]. A (2n+1)-
dimensional manifold M2n+1 is said to be a contact manifold if it admits a
global 1-form η such that η ∧ (dη)n 6= 0 everywhere. Given a contact form η,
we have a unique vector field ξ, which is called the Reeb vector field, satisfying
η(ξ) = 1 and Lξη = 0 (or iξdη = 0), where Lξ denotes Lie differentiation for ξ
and iξ denotes the interior product operator by ξ. Then we have a Riemannian
metric g and a (1, 1)-tensor field φ such that

(2.1) η(X) = g(X, ξ), dη(X,Y ) = g(X,φY ), φ2X = −X + η(X)ξ,

where X and Y are vector fields on M . A Riemannian manifold M equipped
with structure tensors (η, g, φ, ξ) satisfying (2.1) is said to be a contact Rieman-
nian manifold and is denoted by M = (M ; η, g, φ, ξ). For a contact Riemannian
manifold M , we define a (1, 1)-tensor field h by h = 1

2Lξφ. Then we may
observe that h is self-adjoint and satisfies

(2.2) hξ = 0 and hφ = −φh,

(2.3) ∇Xξ = −φX − φhX,
where ∇ is Levi-Civita connection. From (2.2) and (2.3) we see that each
trajectory of ξ is a geodesic. Along a trajectory of ξ, the Jacobi operator
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` = R(·, ξ)ξ is a symmetric (1, 1)-tensor field, where R denotes the Riemannian
curvature tensor. We have

(2.4) trace ` = g(Sξ, ξ) = 2n− trace (h2),

(2.5) ∇ξh = φ− φ`− φh2,

(2.6) g(R(X,Y )ξ, Z) = g((∇Zφ)X,Y ) + g((∇Y φh)X − (∇Xφh)Y,Z)

for all vector fields X,Y, Z on M , where S is the Ricci tensor field of type (1,1).
A contact Riemannian manifold for which ξ is Killing is called a K-contact

manifold. It is easy to see that a contact Riemannian manifold is K-contact if
and only if h = 0. Moreover, we find that for a K-contact manifold Sξ = 2nξ,
from which we see that a K-contact manifold admits already an H-contact
structure, which means that the Reeb vector field ξ is a harmonic vector field
(see, [10]). For a contact Riemannian manifold M one may define naturally
an almost complex structure J on M × R. If the almost complex structure
J is integrable, M is said to be normal or Sasakian. A Sasakian manifold is
characterized by a condition

(2.7) R(X,Y )ξ = η(Y )X − η(X)Y

for all vector fields X and Y . For more details about contact Riemannian
manifolds, we refer to [1].

For a contact Riemannian manifold M , the tangent space TpM of M at
each point p ∈ M is decomposed as TpM = Dp ⊕ {ξ}p(direct sum), where we
denote Dp = {v ∈ TpM | η(v) = 0}. Then D : p → Dp defines a distribution
orthogonal to ξ, which is called the contact distribution.

Definition 1 ([4]). A contact Riemannian manifold M = (M ; η, g, φ, ξ) is said
to have an η-parallel Ricci tensor if g((∇US)V,W ) = 0 for all vector fields
U, V,W ∈ D.

A Sasakian manifold M = (M ; η, g, φ, ξ) is said to be locally φ-symmetric if
M satisfies

φ2(∇VR)(X,Y )Z = 0

for all vector fields V,X, Y, Z ∈ D ([11]). Then we have:

Proposition 1. Let M = (M ; η, g, φ, ξ) be a Sasakian manifold. If M is
locally φ-symmetric, then M has an η-parallel Ricci tensor. In dimension 3,
the converse also holds.

Proof. For a Sasakian manifold M , we compute

(∇Uρ)(V,W ) = g((∇UR)(ξ, V )W, ξ) +

n∑
i=1

g((∇UR)(ei, V )W, ei)

+

n∑
i=1

g((∇UR)(φei, V )W,φei)

(2.8)
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for any adapted orthonormal basis {ξ, ei, φei} (i = 1, 2, . . . , n). From (2.3) and
(2.7), we obtain g((∇UR)(ξ, V )W, ξ) = 0 for U, V,W ∈ D. Thus, from (2.8) we
find that a Sasakian locally φ-symmetric space has an η-parallel Ricci tensor.
For the dimension 3, it is well-known that the curvature tensor R is expressed
only in terms of the Ricci tensor S, the metric tensor g and the scalar curvature
τ (see (3.3)). Then, since Sξ = 2ξ, we see that an η-parallelism of Ricci tensor
implies a local φ-symmetry. �

3. η-parallel contact 3-manifolds

In this section, we prove Theorem A. For a 3-dimensional contact Riemann-
ian manifold M , it is known that the associated almost CR-structure is inte-
grable. Then we have (cf. [12])

(3.1) (∇Xφ)Y = g(X + hX, Y )ξ − η(Y )(X + hX).

Lemma 2 ([4]). A 3-dimensional contact Riemannian manifold is Sasakian if
and only if h = 0.

From (2.6) and (3.1) we compute

(3.2) R(X,Y )ξ = η(Y )(X + hX)− η(X)(Y + hY ) + φ((∇Y h)X − (∇Xh)Y )

for all vector fields X and Y .

Proof of Theorem A. First of all, we recall that the curvature tensor R of a
3-dimensional Riemannian manifold is expressed by

R(X,Y )Z = ρ(Y, Z)X − ρ(X,Z)Y + g(Y, Z)SX − g(X,Z)SY

− τ

2
{g(Y,Z)X − g(X,Z)Y }

(3.3)

for all vector fields X,Y, Z, where ρ(X,Y ) = g(SX, Y ) and τ is the scalar
curvature of the manifold. Let M = (M3; η, g, φ, ξ) be a 3-dimensional H-
contact manifold whose Ricci tensor S is η-parallel. If h = 0 on M , then
from Lemma 2 we see that M is Sasakian. Moreover, by Proposition 1 we see
that M is locally φ-symmetric. From now we suppose that M is non-Sasakian,
that is, h is not identically zero on M . Let W be the subset of M on which
the number of distinct eigenvalues of h is constant. Then W is an open and
dense subset of M . We fix any point q in W . Then from (2.2) there exist a
positive function λ and a local orthonormal frame field {e1, e2 = φe1, e3 = ξ}
on a neighborhood N(q)(⊂W ) containing q such that he1 = λe1, he2 = −λe2,
hξ = 0. We denote Γijk = g(∇eiej , ek), ρij = ρ(ei, ej), ∇iρjk = (∇eiρ)(ej , ek)
and ∇hRijkl = g((∇ehR)(ei, ej)ek, el) for h, i, j, k, l = 1, 2, 3. Then from (2.3)
we get

Γ132 = −Γ123 = −(1 + λ), Γ231 = −Γ213 = 1− λ(3.4)

and

Γ131 = Γ113 = Γ232 = Γ223 = 0.(3.5)
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Also, from (2.5) and taking account of (2.4) and (3.3), we have

ξ(λ) = ρ12(3.6)

and

(3.7) 4λΓ312 = ρ22 − ρ11.

The above general setting and general formulas (3.4)-(3.7) for a 3-dimensional
contact metric manifold are referred to [4]. Since Sξ = σξ, we have

(3.8) ρ13 = ρ31 = 0, ρ23 = ρ32 = 0.

From (3.5) and (3.8) we have

(3.9) ∇3ρ13 = ∇3ρ31 = 0, ∇3ρ23 = ∇3ρ32 = 0.

Since M has η-parallel Ricci tensor, we have

(3.10) ∇aρbc = 0

for a, b, c = {1, 2}.
On the other hand, applying the second Bianchi identity in (3.3), we have

(3.11) 2∇2ρ12 + 2∇3ρ13 +∇1ρ11 −∇1ρ22 −∇1ρ33 = 0,

(3.12) 2∇1ρ21 + 2∇3ρ23 −∇2ρ11 +∇2ρ22 −∇2ρ33 = 0.

From (3.9), (3.10), (3.11) and (3.12), we have

∇1ρ33 = ∇2ρ33 = 0.

Since ρ33 = 2−2λ2, together with (3.5) and (3.8) we see that e1(λ) = e2(λ) = 0.
So,

0 = [e1, e2](λ)

= η([e1, e2])(ξλ)

= 2dη(e1, e2)(ξλ),

(3.13)

which yields that ξ(λ) = 0. Hence, since M is connected, we find that λ is a
constant on M . And from (3.6) we obtain

(3.14) ρ12 = ρ21 = 0.

From (3.14) by using (3.8) and (3.10) we obtain

(3.15) ∇1ρ12 = Γ112(ρ11 − ρ22) = 0

and

(3.16) ∇2ρ12 = Γ221(ρ22 − ρ11) = 0.

We now set N(q) = N0(q) ∪ N1(q), where N0 = {p ∈ N(q) | ρ11(p) = ρ22(p)}
and N1 = {p ∈ N(q) | ρ11(p) 6= ρ22(p)}. Here we divide our arguments into
three cases: (I) N = N0, (II) N = N1, or (III) N0 and N1 respectively have
interior points.
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(I) N = N0; Then ρ11 = ρ22 on N . Then since λ 6= 0 from (3.7) we get

(3.17) Γ312 = Γ321 = 0.

Taking account of (3.8) we get R(e1, e2)ξ = 0 in (3.3). Hence, by using (3.2)
we have

(3.18) Γ212e2 − Γ121e1 = 0.

From (3.18) we get

(3.19) Γ212 = Γ221 = Γ121 = Γ112 = 0.

Thus, together with (3.4), (3.5), (3.17) and (3.19), we have

(3.20) [e1, e2] = 2e3, [e2, e3] = (1− λ)e1, [e3, e1] = (1 + λ)e2.

Then due to J. Milnor’s classification for 3-dimensional Lie groups admitting
unimodular Lie algebra with left invariant metric ([7]), we see that M is locally
isometric to one of the following:

(i) SU(2) (or SO(3)) with a left invariant metric when 0 < λ < 1;
(ii) SL(2,R) (or O(1, 2)) with a left invariant metric when λ > 1;
(iii) the group E(2) of rigid motions of the Euclidean 2-space when λ = 1.

In fact, if λ = 1, then from (3.4), (3.5), (3.17), (3.19) and (3.20) we find that
R = 0.

(II) N = N1; First, we show ρ22 − ρ11 is constant. From (3.15) and (3.16) we
get

Γ212 = Γ221 = Γ121 = Γ112 = 0.

Since S is η-parallel, from (3.14) and (3.10) we see that e1(ρ22−ρ11) = e2(ρ22−
ρ11) = 0, and further from (3.7) we find that

(3.21) e1(Γ312) = e2(Γ312) = 0.

Together with (3.4), (3.5) and (3.21) we calculate

R(e1, e2)e1 = ∇e1(∇e2e1)−∇e2(∇e1e1)−∇[e1,e2]e1

= (1 + λ)(1− λ)e2 − 2Γ312e2,
(3.22)

R(e1, e2)e2 = ∇e1(∇e2e2)−∇e2(∇e1e2)−∇[e1,e2]e2

= −(1 + λ)(1− λ)e1 + 2Γ312e1,
(3.23)

and

R(e3, e1)e1 = ∇e3(∇e1e1)−∇e1(∇e3e1)−∇[e3,e1]e1

= −Γ312(1 + λ)e3 + (Γ312 + 1 + λ)(1− λ)e3,
(3.24)

R(e3, e1)e3 = ∇e3(∇e1e3)−∇e1(∇e3e3)−∇[e3,e1]e3

= Γ312(1 + λ)e1 − (Γ312 + 1 + λ)(1− λ)e1,
(3.25)

and similarly we obtain

R(e1, e2)e3 = R(e2, e3)e1 = R(e3, e1)e2 = 0.(3.26)
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Moreover, together with (3.22), (3.23), (3.24), (3.25) and (3.26) we have

(∇e3R)(e1, e2)e1 = −2e3(Γ312)e2,

(∇e1R)(e2, e3)e1 = (∇e2R)(e3, e1)e1 = 0.

Thus, by the 2nd Bianchi identity, we have e3(Γ312) = 0, and hence with (3.21)
we see that Γ312 is constant. From (3.7), we further see that ρ22 − ρ11 is
constant. After all, together with (3.4), (3.5) we have

(3.27) [e1, e2] = 2e3, [e2, e3] = (1− λ+ Γ312)e1, [e3, e1] = (1 + λ+ Γ312)e2.

By similar arguments as in the first case, we see that M is locally isometric to
one of the following:

(i) SU(2) (or SO(3)) with a left invariant metric when 1 + Γ312 > λ;
(ii) SL(2,R) (or O(1, 2)) with a left invariant metric when −λ < 1+Γ312 < λ

or 1 + Γ312 < −λ;
(iii) E(2) with a left invariant metric when 1 + Γ312 = λ;
(iv) the group E(1, 1) of rigid motions of Minkowski 2-space with a left

invariant metric when 1 + Γ312 = −λ.

(III) N0 and N1 respectively have interior points; In view of the above cases
(I) and (II), by the continuity of ρ22 − ρ11 we see that this case cannot occur.

Conversely, since a Sasakian manifold is H-contact, due to Proposition 1 we
see that a Sasakian locally φ-symmetric space is H-contact and it has η-parallel
Ricci tensor. Now, we consider a 3-dimensional Lie group with the Lie algebra
structure

(3.28) [e1, e2] = c1e3, [e2, e3] = c2e1, [e3, e1] = c3e2

for some constants c1( 6= 0), c2, c3. Let {ωi} be the dual 1-forms to the vector
fields {ei}. By using (3.28) we get dω3(e1, e2) = −dω3(e2, e1) = − c12 and
dω3(ei, ej) = 0 for (i, j) 6= (1, 2), (2, 1). Further we easily check that ω3 ∧
dω3(e1, e2, e3) = − c16 (6= 0), and hence ω3 is a contact form and e3 is the Reeb
vector field. Define a Riemannian metric g and a (1,1)-tensor field φ by

g(ei, ej) = δij , dω3(ei, ej) = g(ei, φej)

for i, j = 1, 2, 3. Then, for (ω3, g, φ, e3) to be a contact Riemannian structure,
it must follow that g(φei, φej) = g(ei, ej) − ω3(ei)ω3(ej) for i, j = 1, 2, 3, and
hence we have c1 = 2.

Recall the Koszul formula

2g(∇XY,Z) = Xg(Y,Z) + Y g(Z,X)− Zg(X,Y )

+ g(Y, [Z,X]) + g(Z, [X,Y ])− g(X, [Y,Z])

for X,Y, Z are smooth vector fields on the manifold. We put

Γijk = g (∇eiej , ek) for i, j, k = 1, 2, 3.
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Then together with (3.28) we obtain

Γ123 =
1

2
(c3 − c2 + 2),

Γ213 =
1

2
(c3 − c2 − 2),

Γ312 =
1

2
(c3 + c2 − 2),

all others are zero.

(3.29)

From (3.29) we have

Se1 =
(1

2
(c22 − c23)− 2 + 2c3

)
e1,

Se2 =
(1

2
(c23 − c22)− 2 + 2c2

)
e2,

Se3 =
(
− 1

2
(c2 − c3)2 + 2

)
e3.

(3.30)

That is, a 3-dimensional unimodular Lie group with left invariant contact met-
ric structure is a H-contact manifold. Moreover, from (3.29) and (3.30) we can
show that S is η-parallel, that is, ∇aρbc = 0 for a, b = 1, 2.

Therefore, summing up all the arguments so far and using the continuity
argument of λ, then we have our Theorem A. �

Perrone [8] classified all simply connected homogeneous contact Riemann-
ian 3-manifolds. Recall that M is called unimodular if its left invariant Haar
measure is also right invariant. In terms of the Lie algebra m, M is unimodular
if and only if the adjoint transformation adX has trace zero for every X ∈ m.

4. Remarks

We remark that there are lots of H-contact 3-manifolds which do not satisfy
∇ξh = µhφ (µ ∈ R) (cf. [6]). Actually, there is no inclusion relation between
the class of H-contact 3-manifolds and the class of contact 3-manifolds which
satisfy ∇ξh = µhφ. In this section, we show a homogeneous example and a
non-homogeneous example which satisfy the condition ∇ξh = µhφ (µ ∈ R),
but they are not H-contact (cf. [5]).

Example 1. Let M be a 3-dimensional non-unimodular Lie group with left
invariant contact metric structure. Then we know that there exists an or-
thonormal basis {e1, e2 = ϕe1, e3 = ξ} ∈ m such that

(4.1) [e1, e2] = αe2 + 2e3, [e2, e3] = 0, [e3, e1] = γe2,
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where α 6= 0. Moreover, M is Sasakian if and only if γ = 0 (cf. [8]). From
(4.1), by using the Koszul formula we have

(4.2)



Γ123 =
γ + 2

2
,

Γ212 = −α,

Γ213 =
γ − 2

2
,

Γ312 =
γ − 2

2
,

all others are zero.

From (4.2), we have the Ricci tensor

(4.3)

Se1 =

(
−α2 − 2 + 2γ − γ2

2

)
e1,

Se2 =

(
−α2 − 2 +

γ2

2

)
e2 + αγe3,

Se3 = αγe2 +

(
2− γ2

2

)
e3.

Moreover, from (4.2) we have

(4.4) he1 = γ/2e1, he2 = −γ/2e2.
From (4.2) and (4.4), we see that ∇ξh = (2− γ)hφ.

Modifying Perrone’s example in [9], then we have a following example.

Example 2. Let M be the open submanifold {(x, y, z) ∈ R3 | x 6= 0} of Carte-
sian 3-space together with a contact form η = xydx + dz. The characteristic
vector field of this contact 3-manifold is ξ = ∂/∂z. For β ∈ R, take a global
frame field

e1 = − 2

x

∂

∂y
, e2 =

∂

∂x
− βz

x

∂

∂y
− xy ∂

∂z
, e3 = ξ.

Then {e1, e2} generates the contact distribution, and the vector fields e1, e2, e3
satisfy

(4.5) [e3, e1] = 0, [e2, e3] = −β
2
e1, [e1, e2] = 2e3 +

1

x
e1.

Define a Riemannian metric g with respect to {e1, e2, e3} to be an orthonormal
frame. Moreover, define an endomorphism field φ by φe1 = e2, φe2 = −e1 and
φξ = 0. (g, φ, ξ) is an associated almost contact metric structure for η. The

endomorphism field h satisfies he1 = β
4 e1, he2 = −β4 e2. Hence, M is Sasakian

if and only if β = 0. Perrone’s example in [9] is just the case β = 4. We
compute that

∇ξh = (2 +
β

2
)hφ.
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From the straightforward computations we have Sξ = − β
2xe1 + 2(1 − β2

16 )ξ.
From this, we see at once that M is H-contact if and only if β = 0 (M is
Sasakian). Furthermore, we note that M has η-parallel curvature tensor, that
is, M is weakly φ-symmetric in the sense of [9] if and only if β = 4.
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