DOI QR코드

DOI QR Code

Study on the method of safety diagnosis of electrical equipments using fuzzy algorithm

퍼지알고리즘을 이용한 전기전자기기의 안전진단방법에 대한 연구

  • Lee, Jae-Cheol (Division of Information and Communication Engineering, Sungkyul University)
  • 이재철 (성결대학교 정보통신공학부)
  • Received : 2018.03.22
  • Accepted : 2018.07.20
  • Published : 2018.07.28

Abstract

Recently, the necessity of safety diagnosis of electrical devices has been increasing as the fire caused by electric devices has increased rapidly. This study is concerned with the safety diagnosis of electric equipment using intelligent Fuzzy technology. It is used as a diagnostic input for the multiple electrical safety factors such as the use current, cumulative use time, deterioration and arc characteristics inherent to the equipment. In order to extract these information in real time, a device composed of various sensor circuits, DSP signal processing, and communication circuit is implemented. The fuzzy logic algorithm using the Gaussian function for each information is designed and compiled to be implemented on a small DSP board. The fuzzy logic receives the four diagnostic information, deduces it by the fuzzy engine, and outputs the overall safety status of the device as a 100-step analog fuzzy value familiar to human sensibility. By experiments of a device that combines hardware and fuzzy algorithm implemented in this study, it is verified that it can be implemented in a small DSP board with human-friendly fuzzy value, diagnosing real-time safety conditions during operation of electric equipment. In the future, we expect to be able to study more intelligent diagnostic systems based on artificial intelligent with AI dedicated Micom.

최근 전기기기로 인한 화재발생이 급증함에 따라 기기에 대한 안전진단의 필요성이 높아지고 있다. 본 연구는 지능형의 Fuzzy기술을 이용한 전기기기의 안전진단에 관한 것으로 기기의 사용전류특성, 누적사용시간, 열화특성 및 Arc특성 등의 복합적인 전기안전 요인을 검출하여 진단한다. 이들 안전요인을 실시간으로 추출하기 위하여 각종 Sensor회로, DSP(Digital Signal Processor) 신호처리회로, 무선통신회로 등으로 구성된 Board를 설계하였고, 추출된 4가지 진단정보를 이용하여, 기기의 안전정도를 퍼지수치 값으로 표시하기 위하여 각 정보마다 Gaussian function을 사용한 퍼지 알고리즘을 설계하고 DSP에 실장 하였다. 지능적인 퍼지알고리즘은 4가지의 진단정보를 입력받아 퍼지엔진으로 추론하고 해당기기의 종합적인 안전 상태를 사람의 감성에 익숙한 100단계의 아날로그 퍼지 값으로 출력한다. 본 연구에서 구현된 DSP 하드웨어와 퍼지 알고리즘을 융합한 보드의 실험을 통하여, 전기기기의 운전 중 실시간 안전 상태를 복합적으로 검출하고, 사람에게 친화적인 감성적 퍼지 값으로 진단결과를 출력하는 기능을 소형의 DSP Board에서 구현할 수 있음을 입증하였다. 향후 인공지능 전용 Micom이 출시된다면 지능을 바탕으로 보다 진보된 진단 시스템을 연구할 수 있을 것으로 기대한다.

Keywords

References

  1. S. Y. Choi & H. C. Ahn. (2015). Optimized Bankruptcy Prediction through Combining SVM with Fuzzy Theory. Journal of Digital Convergence, 13(3), 155-165. https://doi.org/10.14400/JDC.2015.13.3.155
  2. The mathworks. (2009). MATLAB R2009a : The Mathworks publisher.
  3. Texas Instrument. (2013). TMS320F2837xD dual-core Delfino Microcontroller : Texas Instrument.
  4. G. J. Kim & J. S. Han. (2014). Chronic Disease Management using Smart Mobile Device. Journal of Digital Convergence, 12(4), 335-342. https://doi.org/10.14400/JDC.2014.12.4.335
  5. B. C. Chung & W. S. Na. (2016). A Study on the Smart Fire Detection System using the Wireless Communication. Journal of Convergence for Information Technology, 6(3), 37-41. https://doi.org/10.5121/ijitcs.2016.6104
  6. Texas Instrument. (2013). TMS320F2837xD dual-core Delfino Micro-controller Technical Reference manual : Texas Instrument.
  7. Chipsen Inc. (2016). Bot-CLE310 Specification : Chipsen Inc.
  8. Chipsen Inc. (2016). Bot-CLE310 Protocol : Chipsen Inc.
  9. Texas Instrument. (2011). TPS6208x 1.2A High-efficiency, stepdown converter with DCS-control : Texas Instrument.
  10. Monolithic Power. (2016). MP2159 synchronous Step-down switcher : Monolithic Power.
  11. S. H. Oh. (2015). A Fuzzy Linear Programming Problem with Fuzzy Convergent Equality Constraints. Journal of the Korea Convergence Society, 6(5), 227-232. https://doi.org/10.15207/JKCS.2015.6.5.227
  12. G. W. Jin. (2017). A Study on the BGA Package Measurement using Noise Reduction Filters. Journal of the Korea Convergence Society, 8(11), 15-20. https://doi.org/10.15207/JKCS.2017.8.11.015
  13. Xue-Wei Tian, & J. S. Lim. (2013). Learning Distribution Graphs Using a Neuro-Fuzzy Network for Naive Bayesian Classifier. Journal of Digital Convergence, 11(11), 409-414. https://doi.org/10.14400/JDPM.2013.11.11.409
  14. H. K. Ji, K. S. Jung & G. S. Kil. (2010). Detection technique and device of series arcing phenomena. Journal of the Korean society of Marin Engineering, 34, 332-338. https://doi.org/10.5916/jkosme.2010.34.2.332
  15. D. H. Kim & J. Y. Park. (2010). Development of Monitoring program for detecting current and voltage signals for series arc. Journal of the KOSOS, 25(2), 29-30.
  16. K. J. Park. (2009). The method of series arc detection. SEOUL : Korean intellectual property office.
  17. H. W. Kim & D. H. Back. (2012). The study on detection of serial arc and fire flame by poor contact. Korean Institute of Fire science & Engineering, 26(6), 24-30.
  18. T. Y. Jeong & D. S. Kim. (2010). Power cut-off device that can block power supply by sensing various arcs and overloads. SEOUL : Korean intellectual property office.