참고문헌
- K. H. Lin, C. Yang & H. H. Chen. (2007). What Emotions do News Articles Trigger in their Readers? Proceedings of the 30th Annual International ACM SIGIR Conference on Research and Development in Information Retrieval. ACM, 38(6), 733-734.
- J. S. Song & S. W. Lee (2011). Automatic Construction of Positive/Negative Feature-Predicate Dictionary for Polarity Classification of Product Reviews. Journal of KIISE: Software and Applications, 38(3), 157-168.
- J. S. Myung, D. J Lee & S. G. Lee (2007). A Korean Product Review Analysis System Using a Semi-Automatically Constructed Semantic Dictionary. Proceedings of the 19th Annual Conference on Human and Cognitive Language Technology, 68-75.
- C. H. Jeong, J. H. Kim, Y. J. Jeon & H. J. Jeong (2017). Korean Sentiment Dictionary Based on the Reliability of Review Data. Journal of Korean Institute of Information Scientists and Engineers, 1965-1967.
- J. H. Seo, J. H Cho & J. T. Choi (2015). Design for Opinion Dictionary of Emotion Applying Rules for Antonym of the Korean Grammar. Journal of Advanced Information Technology and Convergence, 13(2), 109-117.
- X. Fang & J. Zhan. (2015). Sentiment Analysis Using Product Review Data. Journal of Big Data, 2(1), 5. https://doi.org/10.1186/s40537-015-0015-2
- B. Pang, L. Lee & S. Vaithyanahtan (2002). Thumbs Up?: Sentiment Classification using Machine Learning Techniques. Proceedings of the ACL-02 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, volume 10, 79-86.
- A. Pak & P. Paroubek (2010). Twitter as a Corpus for Sentiment Analysis and Opinion Mining. LREc, 10.
- L. Qu, G. Ifrim & G. Weikum (2010). The Bag-of-Opinions Method for Review Rating Prediction from Sparse Text Patterns. Proceedings of the 23rd International Conference on Computational Linguistics. Association for Computational Linguistics, 913-921.
- S. Baccianella, A. Esuli & F. Sebastiani. (2009). Multi-Facet Rating of Product Reviews. European Conference on Information Retrieval, 461-472.
- J. S. Kim (2016). Emotion Prediction of Paragraph using Big Data Analysis. Korea Convergence Society, 14(11), 267-273.
- P. Katz, M. Singleton & R. Wicentowski. (2007). SWAT-MP: The SemEval-2007 Systems for Task 5 and Task 14. Proceedings of the 4th International Workshop on Semantic Evaluations. Association for Computational Linguistics, 308-313.
- C. Strapparava & R. Mihalcea (2007). SemEval-2007 Task 14: Affective Text. Proceedings of the 4th International Workshop on Semantic Evaluations. Association for Computational Linguistics, 70-74.
- Y. Rao, J. Lei, L. Wenyin, Q. Li & M. Chen (2014). Building Emotional Dictionary for Sentiment Analysis of Online News. World Wide Web, 17(4), 723-742. https://doi.org/10.1007/s11280-013-0221-9
- J. O. Kim, S. S Lee & H. S. Yong. (2011). Automatic Classification Scheme of Opinions Written in Korean. Journal of Korean Institute of Information Scientists and Engineers, 38(6), 423-428.
- Y. A. Heo, D. Y. Lee & G. G. Kim (2017). A System for Automatic Classification of Traditional Texts. Korea Convergence Society, 8(12), 39-47.
- Bao, S., Xu, S., Zhang, L., Yan, R., Su, Z., Han, D., Yu, Y (2011). Mining Social Emotions from Affective Text. IEEE Transactions on Knowledge and Data Engineering, 24, 1658-1670.
- S. Bao, S. Xu, L. Zhang, R. Yan, Z. Su, D. Han & Y. Yu, (2009). Joint Emotion-Topic Modeling for Social Affective Text Mining. Proceedings of the 9th IEEE International Conference on Data Mining, 699-704.