DOI QR코드

DOI QR Code

Design and Implementation of Potential Advertisement Keyword Extraction System Using SNS

SNS를 이용한 잠재적 광고 키워드 추출 시스템 설계 및 구현

  • Seo, Hyun-Gon (Department of Information Communication Software, Halla University) ;
  • Park, Hee-Wan (Department of Information Communication Software, Halla University)
  • 서현곤 (한라대학교 정보통신소프트웨어학과) ;
  • 박희완 (한라대학교 정보통신소프트웨어학과)
  • Received : 2018.04.25
  • Accepted : 2018.07.20
  • Published : 2018.07.28

Abstract

One of the major issues in big data processing is extracting keywords from internet and using them to process the necessary information. Most of the proposed keyword extraction algorithms extract keywords using search function of a large portal site. In addition, these methods extract keywords based on already posted or created documents or fixed contents. In this paper, we propose a KAES(Keyword Advertisement Extraction System) system that helps the potential shopping keyword marketing to extract issue keywords and related keywords based on dynamic instant messages such as various issues, interests, comments posted on SNS. The KAES system makes a list of specific accounts to extract keywords and related keywords that have most frequency in the SNS.

빅데이터 처리 분야에서 중요한 이슈 중 하나는 인터넷의 주요 키워드를 추출하고 이것을 이용하여 필요한 정보를 가공하는 것이다. 현재까지 제안된 대부분의 키워드 추출 방법들은 대형 포털 사이트의 검색기능을 기반으로 이미 게시된 글이나 작성된 문서 또는 고정된 내용에 기반하고 있다. 본 논문에서는 SNS에 게시되는 다양한 이슈, 대화, 관심 분야, 의견 등 동적인 메시지를 기반으로 이슈 키워드 및 연관 키워드를 추출하여 잠재적 쇼핑 연관 키워드 광고 마케팅에 도움을 주는 시스템(KAES: Keyword Advertisement Extraction System based on SNS)을 개발한다. KAES 시스템은 특정 계정 리스트를 작성하여 SNS에서 빈도수가 가장 많은 핵심 키워드 및 연관 키워드를 추출한다.

Keywords

References

  1. J. C. Choi.(2018). Big Data Patent Analysis Using Social Network Analysis. Journal of the Korea Convergence Society, 9(2), 251-257. https://doi.org/10.15207/JKCS.2018.9.2.251
  2. S. A. Jin, C. E. Heo, Y. K. Jeong & M. Song. (2013). Topic-Network based Topic Shift Detection on Twitter. Journal of the Korean Society for Information Management, 30(1), 285-302. https://doi.org/10.3743/KOSIM.2013.30.1.285
  3. Y. H. Ha, S. W. Lim, & Y. H. Kim. (2012). Trend Analysis through Content-based Tweet Clustering. Fall conference of Korea Information Science Society, 39(2B).
  4. M. Mathioudakis & N. Kousdas. (2010). Twitter Monitor : Trend Detection over the Twitter Stream, ACM Special Interest Group on Management of Data, 1155-1157.
  5. DMC Media. (2016). Facebook Targeting Strategies and Success Stories, Digital Media & Marketing Intelligence Center report. http://www.dmcreport.co.kr
  6. D. Y. Kim, G. G. Lim, & D. C. Lee. (2011). A Study on the Efficiency of internet Keyword Advertisement According to CPM and CPC Methods by Analyzing Transaction Data. The Journal of Society for e-Business Studies, 16(4), 139-154. https://doi.org/10.7838/jsebs.2011.16.4.139
  7. M. G. Kim, N. G. Kim. & I. H. Jung. (2014). A Methodology for Extracting Shopping-Related Keywords by Analyzing Internet Navigation Patterns. Journal of Intelligence and Information Systems, 20(2). 123-136. https://doi.org/10.13088/jiis.2014.20.2.123
  8. S. J. Choi, M. Y. Son. & Y. H. Kim. (2016). Associated Keyword Recommendation System for Keyword-based Blog Marketing. KIISE Transaction on Computing Practices, 22(5). 246-251. https://doi.org/10.5626/KTCP.2016.22.5.246
  9. T. M. Cho. & J. H. Lee. (2015). Latent Keyphrase Extraction Using LDA Model. Journal of Korean institute of Intelligent System 25(2), 180-185. https://doi.org/10.5391/JKIIS.2015.25.2.180
  10. W. You, D. Fontaine & J. P. Barthes. (2013). An Automatic keyphrase system for scientific documents. Knowledge and information systems, 34(3). 691-724. https://doi.org/10.1007/s10115-012-0480-2
  11. Twitter 4J library for Twitter SNS Parsing. http://twitter4j.org
  12. JSON simple library for Facebook SNS Parsing. https://cliftonlabs.github.io/json-simple
  13. Korean morphological analyzer, Komoran. http://www.shineware.co.kr/products/komoran
  14. MySQL Community Server 5.5. https://dev.mysql.com/downloads/mysql/
  15. Java and database connector, Connector J 5.1. https://dev.mysql.com/downloads/connector/j/
  16. Y. H. Chang. .(2012). A Study on the Marketing Performance Using Social Media- Comparison between Portal Advertisement, Blog, and SNS Channel Characteristics and Performance. Journal of Digital Convergence, 10(8). 119-133. https://doi.org/10.14400/JDPM.2012.10.8.119
  17. S. B. Chang, & D. S. Yoom. (2018). The Effects of User Experience on Facebook Acceptance Behavior and Advertising Acceptance Behavior. Journal of Digital Convergence, 16(3). 169-179. https://doi.org/10.14400/JDC.2018.16.3.169