DOI QR코드

DOI QR Code

Diffusion-Weighted Imaging of Upper Abdominal Organs Acquired with Multiple B-Value Combinations: Value of Normalization Using Spleen as the Reference Organ

  • Kim, Bo Ram (Department of Radiology, Chonbuk National University Medical School and Hospital) ;
  • Song, Ji Soo (Department of Radiology, Chonbuk National University Medical School and Hospital) ;
  • Choi, Eun Jung (Department of Radiology, Chonbuk National University Medical School and Hospital) ;
  • Hwang, Seung Bae (Department of Radiology, Chonbuk National University Medical School and Hospital) ;
  • Hwang, Hong Pil (Department of Surgery, Chonbuk National University Medical School)
  • Received : 2017.06.17
  • Accepted : 2017.10.28
  • Published : 2018.06.01

Abstract

Objective: To compare apparent diffusion coefficient (ADC) of the upper abdominal organs acquired with multiple b-value combinations and to investigate usefulness of normalization. Materials and Methods: We retrospectively analyzed data, including 3T diffusion-weighted images, of 100 patients (56 men, 44 women; mean age, 63.9) that underwent liver magnetic resonance imaging. An ADC map was derived with the following six b-value combinations: $b_1=0$, 50, 400, 800; $b_2=0$, 800; $b_3=0$0, 50, 800; $b_4=0$, 400, 800; $b_5=0$, 800; and $b_6=0$, 400, $800s/mm^2$. ADC values of the right liver lobe, left liver lobe, spleen, pancreas, right kidney, and left kidney were measured. ADC values of the spleen were used for normalization. Intraclass correlation coefficients (ICCs), comparison of dependent ICCs, and repeated-measures analysis of variance were used for statistical analysis. Results: Intraclass correlation coefficients of the original ADC revealed moderate to substantial agreement (0.5145-0.6509), while normalized ADCs revealed almost perfect agreement (0.8014-0.8569). ICC of normalized ADC for all anatomical regions revealed significantly less variability than that of the original ADC (p < 0.05). Coefficient of variance for normalized ADC was significantly lower than that for the original ADC (3.0-3.8% vs. 4.8-8.8%, p < 0.05). Conclusion: Normalization of the ADC values of the upper abdominal organs using the spleen as the reference organ significantly decreased variability in ADC measurement acquired with multiple b-value combinations.

Keywords

References

  1. Soyer P, Kanematsu M, Taouli B, Koh DM, Manfredi R, Vilgrain V, et al. ADC normalization: a promising research track for diffusion-weighted MR imaging of the abdomen. Diagn Interv Imaging 2013;94:571-573 https://doi.org/10.1016/j.diii.2013.05.003
  2. Koh DM, Takahara T, Imai Y, Collins DJ. Practical aspects of assessing tumors using clinical diffusion-weighted imaging in the body. Magn Reson Med Sci 2007;6:211-224 https://doi.org/10.2463/mrms.6.211
  3. Qayyum A. Diffusion-weighted imaging in the abdomen and pelvis: concepts and applications. Radiographics 2009;29:1797-1810 https://doi.org/10.1148/rg.296095521
  4. Thoeny HC, De Keyzer F. Extracranial applications of diffusion-weighted magnetic resonance imaging. Eur Radiol 2007;17:1385-1393 https://doi.org/10.1007/s00330-006-0547-0
  5. Afaq A, Andreou A, Koh DM. Diffusion-weighted magnetic resonance imaging for tumour response assessment: why, when and how? Cancer Imaging 2010;10 Spec no A:S179-S188 https://doi.org/10.1102/1470-7330.2010.9032
  6. Schraml C, Schwenzer NF, Clasen S, Rempp HJ, Martirosian P, Claussen CD, et al. Navigator respiratory-triggered diffusion-weighted imaging in the follow-up after hepatic radiofrequency ablation-initial results. J Magn Reson Imaging 2009;29:1308-1316 https://doi.org/10.1002/jmri.21770
  7. Wybranski C, Zeile M, Lowenthal D, Fischbach F, Pech M, Rohl FW, et al. Value of diffusion weighted MR imaging as an early surrogate parameter for evaluation of tumor response to highdose-rate brachytherapy of colorectal liver metastases. Radiat Oncol 2011;6:43 https://doi.org/10.1186/1748-717X-6-43
  8. Mannelli L, Kim S, Hajdu CH, Babb JS, Clark TW, Taouli B. Assessment of tumor necrosis of hepatocellular carcinoma after chemoembolization: diffusion-weighted and contrastenhanced MRI with histopathologic correlation of the explanted liver. AJR Am J Roentgenol 2009;193:1044-1052 https://doi.org/10.2214/AJR.08.1461
  9. Parikh T, Drew SJ, Lee VS, Wong S, Hecht EM, Babb JS, et al. Focal liver lesion detection and characterization with diffusion-weighted MR imaging: comparison with standard breath-hold T2-weighted imaging. Radiology 2008;246:812-822 https://doi.org/10.1148/radiol.2463070432
  10. Filipe JP, Curvo-Semedo L, Casalta-Lopes J, Marques MC, Caseiro-Alves F. Diffusion-weighted imaging of the liver: usefulness of ADC values in the differential diagnosis of focal lesions and effect of ROI methods on ADC measurements. MAGMA 2013;26:303-312 https://doi.org/10.1007/s10334-012-0348-1
  11. Vallejo Desviat P, Martinez De Vega V, Recio Rodriguez M, Jimenez De La Pena M, Carrascoso Arranz J. [Diffusion MRI in the study of hepatic lesions]. Cir Esp 2013;91:9-16 https://doi.org/10.1016/j.ciresp.2011.10.006
  12. Cui Y, Zhang XP, Sun YS, Tang L, Shen L. Apparent diffusion coefficient: potential imaging biomarker for prediction and early detection of response to chemotherapy in hepatic metastases. Radiology 2008;248:894-900 https://doi.org/10.1148/radiol.2483071407
  13. Koh DM, Scurr E, Collins D, Kanber B, Norman A, Leach MO, et al. Predicting response of colorectal hepatic metastasis: value of pretreatment apparent diffusion coefficients. AJR Am J Roentgenol 2007;188:1001-1008 https://doi.org/10.2214/AJR.06.0601
  14. Nicholson C, Phillips JM. Ion diffusion modified by tortuosity and volume fraction in the extracellular microenvironment of the rat cerebellum. J Physiol 1981;321:225-257 https://doi.org/10.1113/jphysiol.1981.sp013981
  15. Rosenkrantz AB, Oei M, Babb JS, Niver BE, Taouli B. Diffusionweighted imaging of the abdomen at 3.0 Tesla: image quality and apparent diffusion coefficient reproducibility compared with 1.5 Tesla. J Magn Reson Imaging 2011;33:128-135 https://doi.org/10.1002/jmri.22395
  16. Zhang JL, Sigmund EE, Chandarana H, Rusinek H, Chen Q, Vivier PH, et al. Variability of renal apparent diffusion coefficients: limitations of the monoexponential model for diffusion quantification. Radiology 2010;254:783-792 https://doi.org/10.1148/radiol.09090891
  17. Song JS, Kwak HS, Byon JH, Jin GY. Diffusion-weighted MR imaging of upper abdominal organs at different time points: apparent diffusion coefficient normalization using a reference organ. J Magn Reson Imaging 2017;45:1494-1501 https://doi.org/10.1002/jmri.25456
  18. Outwater EK, Siegelman ES, Radecki PD, Piccoli CW, Mitchell DG. Distinction between benign and malignant adrenal masses: value of T1-weighted chemical-shift MR imaging. AJR Am J Roentgenol 1995;165:579-583 https://doi.org/10.2214/ajr.165.3.7645474
  19. Tsushima Y, Ishizaka H, Matsumoto M. Adrenal masses: differentiation with chemical shift, fast low-angle shot MR imaging. Radiology 1993;186:705-709 https://doi.org/10.1148/radiology.186.3.8430178
  20. Do RK, Chandarana H, Felker E, Hajdu CH, Babb JS, Kim D, et al. Diagnosis of liver fibrosis and cirrhosis with diffusionweighted imaging: value of normalized apparent diffusion coefficient using the spleen as reference organ. AJR Am J Roentgenol 2010;195:671-676 https://doi.org/10.2214/AJR.09.3448
  21. Donner A, Eliasziw M. Sample size requirements for reliability studies. Stat Med 1987;6:441-448 https://doi.org/10.1002/sim.4780060404
  22. Donner A, Zou G. Testing the equality of dependent intraclass correlation coefficients. J Royal Stat Soc Series D (The Statistician) 2002;51:367-379 https://doi.org/10.1111/1467-9884.00324
  23. Kim SY, Lee SS, Park B, Kim N, Kim JK, Park SH, et al. Reproducibility of measurement of apparent diffusion coefficients of malignant hepatic tumors: effect of DWI techniques and calculation methods. J Magn Reson Imaging 2012;36:1131-1138 https://doi.org/10.1002/jmri.23744
  24. Braithwaite AC, Dale BM, Boll DT, Merkle EM. Short- and midterm reproducibility of apparent diffusion coefficient measurements at 3.0-T diffusion-weighted imaging of the abdomen. Radiology 2009;250:459-465 https://doi.org/10.1148/radiol.2502080849
  25. Corona-Villalobos CP, Pan L, Halappa VG, Bonekamp S, Lorenz CH, Eng J, et al. Agreement and reproducibility of apparent diffusion coefficient measurements of dual-b-value and multib-value diffusion-weighted magnetic resonance imaging at 1.5 Tesla in phantom and in soft tissues of the abdomen. J Comput Assist Tomogr 2013;37:46-51 https://doi.org/10.1097/RCT.0b013e3182720e07
  26. Miquel ME, Scott AD, Macdougall ND, Boubertakh R, Bharwani N, Rockall AG. In vitro and in vivo repeatability of abdominal diffusion-weighted MRI. Br J Radiol 2012;85:1507-1512 https://doi.org/10.1259/bjr/32269440
  27. Padhani AR, Liu G, Koh DM, Chenevert TL, Thoeny HC, Takahara T, et al. Diffusion-weighted magnetic resonance imaging as a cancer biomarker: consensus and recommendations. Neoplasia 2009;11:102-125 https://doi.org/10.1593/neo.81328
  28. Song JS, Hwang SB, Chung GH, Jin GY. Intra-individual, inter-vendor comparison of diffusion-weighted MR imaging of upper abdominal organs at 3.0 Tesla with an emphasis on the value of normalization with the spleen. Korean J Radiol 2016;17:209-217 https://doi.org/10.3348/kjr.2016.17.2.209
  29. Kim T, Murakami T, Takahashi S, Hori M, Tsuda K, Nakamura H. Diffusion-weighted single-shot echoplanar MR imaging for liver disease. AJR Am J Roentgenol 1999;173:393-398 https://doi.org/10.2214/ajr.173.2.10430143
  30. Papanikolaou N, Gourtsoyianni S, Yarmenitis S, Maris T, Gourtsoyiannis N. Comparison between two-point and fourpoint methods for quantification of apparent diffusion coefficient of normal liver parenchyma and focal lesions. value of normalization with spleen. Eur J Radiol 2010;73:305-309 https://doi.org/10.1016/j.ejrad.2008.10.023
  31. Taouli B, Thakur RK, Mannelli L, Babb JS, Kim S, Hecht EM, et al. Renal lesions: characterization with diffusion-weighted imaging versus contrast-enhanced MR imaging. Radiology 2009;251:398-407 https://doi.org/10.1148/radiol.2512080880
  32. Park MY, Byun JY. Understanding the mathematics involved in calculating apparent diffusion coefficient maps. AJR Am J Roentgenol 2012;199:W784 https://doi.org/10.2214/AJR.12.9231
  33. Donati OF, Chong D, Nanz D, Boss A, Froehlich JM, Andres E, et al. Diffusion-weighted MR imaging of upper abdominal organs: field strength and intervendor variability of apparent diffusion coefficients. Radiology 2014;270:454-463 https://doi.org/10.1148/radiol.13130819
  34. Chen X, Qin L, Pan D, Huang Y, Yan L, Wang G, et al. Liver diffusion-weighted MR imaging: reproducibility comparison of ADC measurements obtained with multiple breath-hold, free-breathing, respiratory-triggered, and navigator-triggered techniques. Radiology 2014;271:113-125 https://doi.org/10.1148/radiol.13131572

Cited by

  1. Diffusion-Weighted Imaging for Differentiation of Biliary Atresia and Grading of Hepatic Fibrosis in Infants with Cholestasis vol.21, pp.None, 2020, https://doi.org/10.3348/kjr.2020.0055
  2. An overview of non-invasive imaging modalities for diagnosis of solid and cystic renal lesions vol.58, pp.1, 2018, https://doi.org/10.1007/s11517-019-02049-z
  3. Diagnostic test accuracy of ADC values for identification of clear cell renal cell carcinoma: systematic review and meta-analysis vol.30, pp.7, 2018, https://doi.org/10.1007/s00330-020-06740-w