Acknowledgement
Grant : 영상 빅데이터기반 기계학습을 통한 스마트 범죄예방 솔루션 개발
Supported by : 산업통상자원부
References
- A. Bialkowski, S. Denman, S. Sridharan, C. Fookes, and P. Lucey, A database for person re-identification in multi-camera surveillance networks, DICTA, 2012.
- A. Schumann, E. Monari, A soft-biometrics dataset for person tracking and re-identification, AVSS, 2014.
- J. Per, V. S. Kenk, M. Kristan, and S. Kovacic, Dana36: A multi-camera image dataset for object identification in surveillance scenarios, AVSS, 2012.
- M. Piccardi, Background subtraction techniques: a review, Proc. IEEE Int. Conf. Systems, Man, Cybernetics, 2004.
- A. Krizhevsky, I. Sutskever, and G. E. Hinton, Imagenet classification with deep convolutional neural networks, NIPS '12, pp. 1106-1114, 2012.
- A. Angelova, A. Krizhevsky, V. Vanhoucke, A. Ogale, and D. Ferguson, Real-time pedestrian detection with deep network cascades, BMVC, 2015.
- S. Ren, K. He, R. Girshick and J. Sun, Faster R-CNN: Towards Real-Time Object Detection with Region Proposal Networks, NIPS, 2015.
- L. Zhang, L. Lin, X. Liang and K. He, Is Faster R-CNN Doing Well for Pedestrian Detection? ECCV, 2016.
- R. Girshick, Faster RCNN with PyTorch. [Online]. Available: https://github.com/longcw/faster_rcnn_pytorch