DOI QR코드

DOI QR Code

Characterization of Cement Solidification for Enhancement of Cesium Leaching Resistance

세슘 침출 저항성 증진 시멘트 고화체의 제조 및 특성 평가

  • Received : 2017.12.07
  • Accepted : 2018.03.05
  • Published : 2018.06.29

Abstract

Currently, the Korea Atomic Energy Research Institute (KAERI) is planning to build the Ki-Jang Research Reactor (KJRR) in Ki-Jang, Busan. It is important to safely dispose of low-level radioactive waste from the operation of the reactor. The most efficient way to treat radioactive waste is cement solidification. For a radioactive waste disposal facility, cement solidification is performed based on specific waste acceptance criteria such as compressive strength, free-standing water, immersion and leaching tests. Above all, the leaching test is important to final disposal. The leakage of radioactive waste such as $^{137}Cs$ causes not only regional problems but also serious global ones. The cement solidification method is simple, and cheaper than other solidification methods, but has a lower leaching resistance. Thus, this study was focused on the development of cement solidification for an enhancement of cesium leaching resistance. We used Zeolite and Loess to improve the cesium leaching resistance of KJRR cement solidification containing simulated KJRR liquid waste. Based on an SEM-EDS spectrum analysis, we confirmed that Zeolite and Loess successfully isolated KJRR cement solidification. A leaching test was carried out according to the ANS 16.1 test method. The ANS 16.1 test is performed to analyze cesium ion concentration in leachate of KJRR cement for 90 days. Thus, a leaching test was carried out using simulated KJRR liquid waste containing $3000mg{\cdot}L^{-1}$ of cesium for 90 days. KJRR cement solidification with Zeolite and Loess led to cesium leaching resistance values that were 27.90% and 21.08% higher than the control values. In addition, in several tests such as free-standing water, compressive strength, immersion, and leaching tests, all KJRR cement solidification met the waste acceptance or satisfied the waste acceptance criteria for final disposal.

현재, 한국원자력연구원은 부산 기장에 연구용 원자로(Ki-Jang Research Reactor, KJRR)를 건설 계획하고 있다. 원자로를 운영하면 중 저준위 방사성폐기물이 발생하므로 방사성 폐기물을 안전하게 처리 하는 것이 중요하다. 현재, 다양한 형태의 방사성 폐기물을 처리 할 수 있는 시멘트 고화 방법을 일반적으로 사용하고 있으며, 방사성 폐기물 처분시설 인수 기준(압축 강도, 유리수, 침수 및 침출시험 등)을 만족해야 한다. 특히, 폐기물에 함유된 방사성 세슘이 유출 될 경우 범 국제적인 문제를 야기하므로, 고화체 인수 기준 중에서 침출시험이 가장 중요한 인자이다. 시멘트 고화 방법은 다른 고화 방법 보다 공정이 간단하며 비용이 적게 들지만, 침출 저항성이 낮다. 이에 본 연구는 시멘트 고화체 세슘 침출 저항성 증진을 위하여 기장 연구용 원자로(KJRR) 모사폐액과 대표적인 세슘 흡착제인 제올라이트와 황토를 혼합하여 기장로 모의폐액 시멘트를 제조하였다. 제올라이트와 황토가 시멘트 고화체와 결합되어 있는 것을 SEM-EDS를 통하여 정량적으로 확인하였다. 침출 시험은 ANS 16.1 방법에 의해 90일동안 진행하였다. 기장로 모의폐액 시멘트의 세슘(3000 ppm)을 첨가하여 90일간의 침출시험 후 침출수의 세슘 농도 분석 결과, 제올라이트와 황토가 포함된 모의폐액 시멘트는 제올라이트와 황토를 첨가하지 않은 대조군에 비해 최대 27.90%, 21.08%의 세슘 침출 저항성 정도를 나타내는 것을 확인하였다. 또한, 제올라이트와 황토가 포함된 기장로 모의폐액 시멘트는 인수 기준(압축강도, 유리수 유무, 침수 및 침출 지수)을 통과 하는 것을 확인하였다.

Keywords

References

  1. International Atomic Energy Agency, "Available reprocessing and recycling services for Research reactor spent nuclear fuel", IAEA Nuclear Energy Series, NO.NW-T-1.11 (2017).
  2. S.V. Avery, "Caesium accumulation by microorganisms: uptake mechanisms, cation competition, compartmentalization and toxicity", Journal of Industrial Microbiology & Biotechnology, 14(2), 76-84 (1995). https://doi.org/10.1007/BF01569888
  3. L. Dekker, T. H. Osborne, and J. M. Santini, "Isolation and identification of cobalt-and caesium-resistant bacteria from a nuclear fuel storage pond", FEMS microbiology letters, 359(1), 81-84 (2014). https://doi.org/10.1111/1574-6968.12562
  4. B. Mosquere, C. Carvalho, R. Veiga, L. Mangia, and R. Anjos, "$^{137}Cs$ distribution in tropical fruit trees after soil contamination", Environmental and experimental botany, 55(3), 273-281 (2006). https://doi.org/10.1016/j.envexpbot.2004.11.007
  5. D. Banerjee, U. Sandhya, S. Pahan, A. Joseph, and J. Shah, "Removal of $^{137}Cs$ and $^{90}Sr$ from low-level radioactive effluents by hexacyanoferrate loaded synthetic 4A type zeolite", Journal of Radioanalytical and Nuclear Chemistry, 311, 893-902 (2017). https://doi.org/10.1007/s10967-016-5097-6
  6. A. El. Kamash, "Evaluation of zeolite A for the sorptive removal of $Cs^+$ and $Sr^{2+}$ ions from aqueous solutions using batch and fixed bed column operations", Journal of hazardous materials, 151(1), 432-445 (2008). https://doi.org/10.1016/j.jhazmat.2007.06.009
  7. J. Vesjsada, D. Hradil, Z. Randa, E. Jelinek, and K. Stulik, "Adsorption of cesium on Czech smectite-rich clays-a comparative study", Applied Clay Science, 30(1), 53-66 (2005). https://doi.org/10.1016/j.clay.2005.03.003
  8. L. Bergaoui, J. Lamber, and R. Prost, "Cesium adsorption on soil clay: macroscopic and spectroscopic measurements", Applied clay science, 29(1), 23-29 (2005). https://doi.org/10.1016/j.clay.2004.09.002
  9. M. R. Awual, S. Suzuki, T. Taguchi, H. Shiwaku, Y. Okamoto, and T. Yaita, "Radioactive cesium removal from nuclear wastewater by novel inorganic and conjugate adsorbents", Chemical Engineering Journal, 242(15), 127-135 (2014). https://doi.org/10.1016/j.cej.2013.12.072
  10. E. Borai, R. Harjula, and A. Paajanen, "Efficient removal of cesium from low-level radioactive liquid waste using natural and impregnated zeolite minerals", Journal of Hazardous Materials, 172(1), 416-422 (2009). https://doi.org/10.1016/j.jhazmat.2009.07.033
  11. S.C. Jang, Y. Haldorai, G.W. Lee, S.K. Hwang, Y.K. Han, C. Roh, and Y. S. Huh, "Porous three-dimensional graphene foam/Prussian blue composite for efficient removal of radioactive $^{137}Cs$", Scientific reports 5, 17510-17520.
  12. H. Eschrich, "The bituminization of radioactive waste solutions at Eurochemic. Seminar on the bituminization of low and medium level radioactive wastes", OECD Nuclear Energy Agency Report (1976).
  13. T.G. Kim, Y.H. Lee, K.M. Lee, S.J. Ahn, and J.S. Son, "A development of the stabilization technology for the solid form of ion exchange resin", Korean Nuclear Society, Autumn meeting of the KNS, 1(2), 12-17 (2003).
  14. International Atomic Energy Agency, "Bituminization of radioactive waste", IAEA-Technical reports (1970).
  15. International Atomic Energy Agency, "Strategy and Methodology for Radioactive Waste Characterization", IAEA-TECDOC-1537 (2007).
  16. International Atomic Energy Agency, "Management of Radioactive Waste from $^{99}Mo$ Production", IAEA-TECDOC-1051 (1998).
  17. J.S. Shon, J.G. Kim, D.S. Hong, and C.G. Seo, "Treatment and Disposability of Intermediate Level Liquid Radwastes generated by Fisson Moly Production", Proc. of the Korean Radioactive Waste Society, 15(1), 271-272 (2017).
  18. Korea Radiactive Waste Agency, SAR of Low and Intermediate Level Radioactive Waste Disposal Facility (2009).
  19. Y.J. Lee, D.S. Hwang, K.W. Lee, G.H. Jeong, and J.K. Moon, "Characterization of Cement Waste Form for Final Disposal of Decommissioned Concrete Waste", Journal of Nuclear Fuel Cycle and Waste Technology, 11(4), 271-280 (2013). https://doi.org/10.7733/jnfcwt-k.2013.11.4.271
  20. W.H. Jang and J.H. Hyun, "A Study on Operating Range of Cement Solidification for Final Disposal of Radioactive Soil", Journal of Korea Society of Waste Management, 34(1), 34-40 (2017). https://doi.org/10.9786/kswm.2017.34.1.34

Cited by

  1. Comparative Study Between Geopolymer and Cement Waste Forms for Solidification of Corrosive Sludge vol.18, pp.4, 2018, https://doi.org/10.7733/jnfcwt.2020.18.4.465