DOI QR코드

DOI QR Code

A Study on the Droplet Formation of Liquid Metal in Water-Mercury System as a Surrogate of Molten Salt-Liquid Metal System at Room Temperature

용융염-액체금속 계의 대용물인 물-수은 계에서 액체금속 액적의 생성에 대한 연구

  • Received : 2017.09.18
  • Accepted : 2018.01.26
  • Published : 2018.06.29

Abstract

As an approach for estimation of the droplet size in the molten salt-liquid metal extraction process, a droplet formation experiment at room temperature was conducted to evaluate the applicability of the Scheele-Meister model with water-mercury system as a surrogate that is similar to the molten salt-liquid metal system. In the experiment, droplets were formed through the nozzle and the droplet size was measured using a digital camera and image analysis software. As nozzles, commercially available needles with inner diameters (ID) of 0.018 cm and 0.025 cm and self-fabricated nozzles with 3-holes (ID: 0.0135 cm), 4-holes (ID: 0.0135 cm), and 2-holes (ID: 0.0148 cm) were used. The mercury penetration lengths in the nozzles were 1.3 cm for the needles and 0.5 cm for the self-fabricated nozzles. The droplets formed from each nozzle maintained stable spherical shape up to 20 cm below the nozzle. The droplet size measurements were within a 10% error range when compared to the Scheele-Meister model estimates. The experimental results show that the Scheele-Meister model for droplet size estimation can be applied to nozzles that stably form droplets in a water-mercury system.

용융염-액체금속 추출공정에서 형성되는 액적 크기를 추정하는 방안으로 용융염-액체금속 계를 상온에서 유사한 물-수은 계로 대체하여 액적 형성 실험을 노즐의 종류에 따라 수행하여 Scheele-Meister 모델의 적용성을 평가하였다. 실험에서 액적의 크기 측정은 디지털카메라와 이미지분석 소프트웨어를 사용하였으며 노즐은 0.018 cm과 0.025 cm의 구멍 크기를 가지며 수은의 통과 길이가 1.3 cm인 상용 니들과 두께가 0.5 cm이며 0.0148 cm 구멍 2개, 0.0135 cm 구멍 3개, 0.0135 cm 구멍 4개인 것을 제작하여 사용하였다. 각각의 노즐에서 형성된 액적은 노즐 아래 20 cm까지 안정적인 구형을 유지하였다. 액적 크기의 측정치를 Scheele-Meister 모델의 추정치와 비교하였을 때 10% 오차 범위 안에서 일치하였다. 실험 결과는 물-수은 계에서 액적을 안정적으로 형성시키는 노즐에 대해 액적 크기 추정을 위한 Scheele-Meister 모델이 적용될 수 있음을 보였다.

Keywords

References

  1. K.C. Song, H. Lee, J.M. Hur, J.G. Kim, D.H. Ahn, and Y.Z. Cho, "Status of Pyroprocessing Technology Development in Korea", Nuclear Engineering and Technology, 42(2), 131-144 (2010). https://doi.org/10.5516/NET.2010.42.2.131
  2. W.G. Ginell, "Oxidative Extraction of Lanthanide Metals from Molten Bismuth by Fused Salts", Industrial and Engineering Chemistry, 51(2), 185-188 (1959). https://doi.org/10.1021/ie50590a046
  3. P. Chiotti and S.J.S. Parry, "Separation of Various Component from Uranium by Oxidation-Reduction Reactions in a Liquid Potassium Chloride-Lithium Chloride/Zinc System", Journal of the Less-Common Metals, 4, 315-337 (1962). https://doi.org/10.1016/0022-5088(62)90002-4
  4. M. Adachi, M. Harada, Y. Kai, and K.I. Koike, "Extraction of Lanthanide Elements and Bismuth in Molten Lithium Chloride-Liquid Bismuth-Lithium Alloy System", Journal of Nuclear Science and Technology, 25(10), 798-797 (1988). https://doi.org/10.1080/18811248.1988.9735927
  5. M. Adachi, K.I. Koike, and M. Harada, "Extractor type in liquid metal-molten salt extraction system", Journal of Nuclear Science and Technology, 25(9), 712-720 (1988). https://doi.org/10.1080/18811248.1988.9735915
  6. J. Pfitzner, "Poiseuille and his law", Anaesthesia, 31, 273-275 (1976). https://doi.org/10.1111/j.1365-2044.1976.tb11804.x
  7. G.F. Scheele and B.J. Meister, "Drop Formation at Low Velocities in Liquid-Liquid Systems", AIChE Journal, 14(1), 9-15 (1968). https://doi.org/10.1002/aic.690140105
  8. D.R. Lide and W.M. Haynes, CRC Handbook of Chemistry and Physics, 90th edition, CRC press (2009).