DOI QR코드

DOI QR Code

Finite-Time Nonlinear Disturbance Observer Based Discretized Integral Sliding Mode Control for PMSM Drives

  • Zheng, Changming (College of Information and Control Engineering, China University of Petroleum (East China)) ;
  • Zhang, Jiasheng (College of Information and Control Engineering, China University of Petroleum (East China))
  • Received : 2017.08.24
  • Accepted : 2018.03.03
  • Published : 2018.07.20

Abstract

To deal with the operation performance degradation of permanent magnet synchronous machine (PMSM) drives with uncertainties and unmodeled dynamics, this paper presents a finite-time nonlinear disturbance observer (FTNDO) based discretized integral sliding mode (DISM) composite control scheme. Based on the reaching-law approach, a DISM speed controller featuring a superior dynamic quality and global robustness against disturbances is constructed. This controller can avoid the reaching phase and overlarge control action. In addition, a sliding mode differentiator based FTNDO is devised and extended to the discrete-time domain for disturbance estimation. The attractive features of the FTNDO are that it can provide a finite-time converging estimation and alleviate the chattering effect in conventional sliding mode observers, while retaining robustness to parameter variations. By feeding the estimate forward to the pre-stage DISM controller, both disturbances and chattering can be significantly suppressed. Moreover, considering the estimation error of a FTNDO caused by discrete sampling, a stability analysis of the composite controller is discussed. Experimental results validate the superiority of the presented scheme.

Keywords

References

  1. X. Zhang, L. Sun, K. Zhao, and L. Sun, "Nonlinear speed control for PMSM system using sliding-mode control and disturbance compensation techniques," IEEE Trans. Power Electron., Vol. 28, No. 3, pp. 1358-1365, Mar. 2013. https://doi.org/10.1109/TPEL.2012.2206610
  2. M. Yang, X. Lang, J. Long, and D. Xu, "A flux immunity robust predictive current control with incremental model and extended state observer for PMSM drive," IEEE Trans. Power Electron., Vol. 32, No. 12, pp. 9267-9279, Dec. 2017. https://doi.org/10.1109/TPEL.2017.2654540
  3. S. Li and Z. Liu, "Adaptive speed control for permanent-magnet synchronous motor system with variations of load inertia," IEEE Trans. Ind. Electron., Vol. 56, No. 8, pp. 3050-3059, Aug. 2009. https://doi.org/10.1109/TIE.2009.2024655
  4. J. W. Jung, V. Q. Leu, D. Q. Dong, H. H. Choi, and T. H. Kim, "Sliding mode control of SPMSM drivers-an online gain tuning approach with unknown system parameters," J. Power Electron., Vol. 14, No. 5, pp. 980-988, Sep. 2014. https://doi.org/10.6113/JPE.2014.14.5.980
  5. X. Yu, B. Wang, and X. Li, "Computer-controlled variable structure systems: the state-of-the-art," IEEE Trans. Ind. Electron., Vol. 8, No. 2, pp. 197-205, May 2012.
  6. J. Y. Humg, W. Gao, and J. C. Hung, "Variable structure control: a survey," IEEE Trans. Ind. Electron., Vol. 40, No. 1, pp. 2-22, Feb. 1993.
  7. M. L. Corradini, G. Ippoliti, S. Longhi, and G. Orlando, "A quasi-sliding mode approach for robust control and speed estimation of PM synchronous motors," IEEE Trans. Ind. Electron., Vol. 59, No. 2, pp. 1096-1104, Feb. 2012. https://doi.org/10.1109/TIE.2011.2158035
  8. T. Bernardes, V. F. Montagner, H. A. Grundling, and H. Pinheiro, "Discrete-time sliding mode observer for sensorless vector control of permanent magnet synchronous machine," IEEE Trans. Ind. Electron., Vol. 61, No. 4, pp. 1679-1691, Apr. 2014. https://doi.org/10.1109/TIE.2013.2267700
  9. K. Abidi, J. X. Xu, and Y. Xinghuo, "On the discrete-time integral sliding-mode control," IEEE Trans. Autom. Contr., Vol. 52, No. 4, pp. 709-715, Apr. 2007. https://doi.org/10.1109/TAC.2007.894537
  10. Z. Xi and T. Hesketh, "Discrete time integral sliding mode control for overhead crane with uncertainties," IET Contr. Theory Appl., Vol. 4, No. 10, pp. 2071-2081, Oct. 2010. https://doi.org/10.1049/iet-cta.2009.0558
  11. Q. Xu, "Adaptive discrete-time sliding mode impedance control of a piezoelectric microgripper," IEEE Trans. Robot., Vol. 29, No. 3, pp. 663-673, Jun. 2013. https://doi.org/10.1109/TRO.2013.2239554
  12. H. Du, X. Yu, M. Z. Chen, and S. Li, "Chattering-free discrete-time sliding mode control," Automatica, Vol. 68, No. 6, pp. 87-91, Jun. 2016. https://doi.org/10.1016/j.automatica.2016.01.047
  13. A. Levant, "Higher-order sliding modes, differentiation and output-feedback control," Int. J. Control, Vol. 76, No. 9/10, pp. 924-941, Jan. 2003. https://doi.org/10.1080/0020717031000099029
  14. A. Levant, "Sliding order and sliding accuracy in sliding mode control," Int. J. Control, Vol. 58, No. 6, pp. 1247-1263, Dec. 1993. https://doi.org/10.1080/00207179308923053
  15. L. Zhao, J. Huang, H. Liu, B. Li, and W. Kong, "Second-order sliding mode observer with online parameter identification for sensorless induction motor drives," IEEE Trans. Ind. Electron., Vol. 61, No. 10, pp. 5280-5289, Oct. 2014. https://doi.org/10.1109/TIE.2014.2301730
  16. A. Levant, "Robust exact differentiation via sliding mode technique," Automatica, Vol. 34, No. 3, pp. 379-384, Mar. 1998. https://doi.org/10.1016/S0005-1098(97)00209-4
  17. Y. B. Shtessel, I. A. Shkolnikov, and A. Levant, "Smooth second-order sliding modes: Missile guidance application," Automatica, Vol. 43, No. 8, pp. 1470-1476, Aug. 2007. https://doi.org/10.1016/j.automatica.2007.01.008
  18. W. H. Chen, J. Yang, L. Guo, and S. Li, "Disturbance-observer-based control and related methods-an overview," IEEE Trans. Ind. Electron., Vol. 63, No. 2, pp. 1083-1095, Feb. 2016. https://doi.org/10.1109/TIE.2015.2478397
  19. Y. A. R. I. Mohamed, "Design and implementation of a robust current-control scheme for a PMSM vector drive with a simple adaptive disturbance observer," IEEE Trans. Ind. Electron., Vol. 54, No. 4, pp. 1981-1988, Aug. 2007. https://doi.org/10.1109/TIE.2007.895074
  20. J. Davila, L. Fridman, and A. Levant, "Second-order sliding-mode observer for mechanical systems," IEEE Trans. Autom. Control, Vol. 50, No. 11, pp. 1785-1789, Nov. 2005. https://doi.org/10.1109/TAC.2005.858636
  21. R. P. Vieira, C. C. Gastaldini, R. Z. Azzolin, and H. A. Grundling, "Discrete-time sliding mode speed observer for sensorless control of induction motor drives," IET Elect. Power Appl., Vol. 6, No. 9, pp. 681-688, Nov. 2012. https://doi.org/10.1049/iet-epa.2011.0269
  22. S. Sarpturk, Y. Istefanopulos, and O. Kaynak, "On the stability of discrete-time sliding mode control systems," IEEE Trans. Autom. Control, Vol. 32, No. 10, pp. 930-932, Oct. 1987. https://doi.org/10.1109/TAC.1987.1104468
  23. T. L. Chern and Y. C. Wu, "Design of integral variable structure controller and application to electrohydraulic velocity servosystems," IEE Proceedings D - Control Theory Appl., Vol. 138, No. 5, pp. 439-444, Sep. 1991. https://doi.org/10.1049/ip-d.1991.0060