DOI QR코드

DOI QR Code

Step-up Switched Capacitor Multilevel Inverter with a Cascaded Structure in Asymmetric DC Source Configuration

  • Received : 2017.10.03
  • Accepted : 2018.03.13
  • Published : 2018.07.20

Abstract

This study presents a novel step-up switched capacitor multilevel inverter (SCMLI) structure. The proposed structure comprises 2 unequal DC voltage sources, 4 capacitors, and 14 unidirectional power switches. It can synthesize 21 output voltage levels. The important features of the proposed topology are its self-voltage boosting and inherent capacitor voltage balancing capabilities. Furthermore, a cascaded structure of the proposed SCMLI with an asymmetric DC voltage source configuration is presented. The proposed topology and its cascaded structure are compared with conventional and other recently developed topologies in terms of different aspects, such as the required components to produce a specific number of output voltage levels, the total standing voltage (TSV) and peak inverse voltage of the structure, and the maximum number of switches in the conducting path. Furthermore, a cost function is developed to verify the cost-effectiveness of the proposed topology with respect to other topologies. The TSV of the proposed topology is significantly lower than those of other topologies. Moreover, the developed topology is cost-effective compared with other topologies. A detailed operating principle, power loss analysis, and selection procedure for switched capacitors are presented for the proposed SCMLI structure. Extensive simulation and experimental studies of a 21-level inverter structure prove the effectiveness and merits of the proposed SCMLI.

Keywords

References

  1. G. Buticchi, E. Lorenzani, and G. Franceschini, "A fivelevel single-phase grid-connected converter for renewable distributed systems," IEEE Trans. Ind. Electron., vol. 60, no. 3, pp. 906-918, Mar. 2013. https://doi.org/10.1109/TIE.2012.2189538
  2. J. Rodriguez, B.Wu, S. Bernet, J. Pontt, and S. Kouro, "Multilevel voltage source converter topologies for industrial medium voltage drives," IEEE Trans. Ind. Electron., vol. 54, no. 6, pp. 2930-2945, Dec. 2007. https://doi.org/10.1109/TIE.2007.907044
  3. F. Tourkhani, P. Viarouge, and T.A. Meynard, "Optimal design and experimental results of a multilevel inverter for an UPS application," in Proc. International Conference on Power Electronics and Drive Systems, Vol. 1, pp. 340-343, 1997.
  4. J. Rodriguez, Jih-Sheng Lai, and F. Z. Peng, "Multilevel inverters: A survey of topologies, controls, and applications," IEEE Trans. Ind. Electron., Vol. 49, No. 4, pp. 724-738, Aug. 2002. https://doi.org/10.1109/TIE.2002.801052
  5. L. G. Franquelo, J. Rodriguez, J. I. Leon, S. Kouro, R. Portillo, and M. A. M. Prats, "The age of multilevel converters arrives," IEEE Ind. Electron. Mag., Vol. 2, No. 2, pp. 28-39, Jun. 2008. https://doi.org/10.1109/MIE.2008.923519
  6. K. K. Gupta and S. Jain, "Multilevel inverter topologies with reduced device count: A review," IEEE Trans. Power Electron., Vol. 31, No. 1, pp. 135-151, Jan. 2016. https://doi.org/10.1109/TPEL.2015.2405012
  7. S. Gui-Jia, "Multilevel DC-link inverter," IEEE Trans. Ind. Appl., Vol. 41, No. 3, pp. 848-854, May/Jun. 2005. https://doi.org/10.1109/TIA.2005.847306
  8. G. Ceglia, V. Guzman, C. Sanchez, F. Ibanez, J. Walter, and M. I. Gimenez, "A new simplified multilevel inverter topology for DC-AC conversion," IEEE Trans. Power Electron., Vol. 21, No. 5, pp. 1311-1319, Sep. 2006. https://doi.org/10.1109/TPEL.2006.880303
  9. Y. Hinago and H. Koizumi, "A single-phase multilevel inverter using switched series/parallel DC voltage sources," IEEE Trans. Ind. Electron., Vol. 57, No. 8, pp. 2643-2650, Aug. 2010. https://doi.org/10.1109/TIE.2009.2030204
  10. Y. Ounejjar and K. Al-Haddad, "A new high power efficiency cascaded U cells multilevel converter," in Proc. Ind. Electron. IEEE Int. Symp., pp. 483-488, 2009.
  11. S. H. Lee and F. S. Kang, "A newstructure of H-bridge multilevel inverter," in Proc. KIPE Conf., pp. 388-390, 2008.
  12. E. Babaei, M. F. Kangarlu, and M. Sabahi, "Extended multilevel converters: An attempt to reduce the number of independent DC voltage sources in cascaded multilevel converters," IET Power Electron., Vol. 7, No. 1, pp. 157-166, Jan. 2014. https://doi.org/10.1049/iet-pel.2013.0057
  13. E. Babaei, "A cascade multilevel converter topology with reduced number of switches," IEEE Trans. Power Electron., Vol. 23, No. 6, pp. 2657-2664, Nov. 2008. https://doi.org/10.1109/TPEL.2008.2005192
  14. E. Babaei, S. Laali, and S. Alilu, "Cascaded multilevel inverter with series connection of novel H-bridge basic units," IEEE Trans. Ind. Electron., Vol. 61, No. 12, pp. 6664-6671, Dec. 2014. https://doi.org/10.1109/TIE.2014.2316264
  15. R. Samanbakhsh and A. Taheri, "Reduction of power electronic components in multilevel converters using new switched capacitor-diode structure," IEEE Trans. Ind. Electron., Vol. 63, No. 11, pp. 7204-7214, Nov. 2016. https://doi.org/10.1109/TIE.2016.2569059
  16. A. Shukla, A. Ghosh, and A. Joshi, "Control of dc capacitor voltages in diode-clamped multilevel inverter using bidirectional buck-boost choppers," IET Power Electron., Vol. 5, No. 9, pp. 1723-1732, Nov. 2012. https://doi.org/10.1049/iet-pel.2012.0237
  17. K. Sano and H. Fujita, "Voltage-balancing circuit based on a resonant switched-capacitor converter for multilevel inverters," IEEE Trans. Ind. Appl., Vol. 44, No. 6, pp. 1768-1776, Nov./Dec. 2008. https://doi.org/10.1109/TIA.2008.2006291
  18. M. Khazraei, H. Sepahvand, K. A. Corzine, and M. Ferdowsi, "Active capacitor voltage balancing in singlephase flying-capacitor multilevel power converters," IEEE Trans. Ind. Electron., Vol. 59, No. 2, pp. 769-778, Feb. 2012. https://doi.org/10.1109/TIE.2011.2157290
  19. P. Roshankumar, R. S. Kaarthic, K. Gupakumar, J. I. Leon, and L. G. Franquelo, "A seventeen-level inverter formed by cascading flying capacitor and floating capacitor H-bridge," IEEE Trans. Power Electron., Vol. 30, No. 7, pp. 3471-3478, Jan. 2015. https://doi.org/10.1109/TPEL.2014.2342882
  20. On-Cheong Mak, and A. Ioinovici, "Switched-capacitor inverter with high power density and enhanced regulation capability," IEEE Trans. Circuits Syst. I: Fundam. Theory Appl., Vol. 45, No. 4, pp. 336-347, Apr. 1998. https://doi.org/10.1109/81.669056
  21. Y. Hinago and H. Koizumi, "A switched-capacitor inverter using series/parallel conversion with inductive load," IEEE Trans. Ind. Electron., Vol. 59, No. 2, pp. 878-887, Feb. 2012. https://doi.org/10.1109/TIE.2011.2158768
  22. E. Babaei and S. S. Gowgani, "Hybrid multilevel inverter using switched capacitor units," IEEE Trans. Ind. Electron., Vol. 61, No. 9, pp. 4614-4621, Sep. 2014. https://doi.org/10.1109/TIE.2013.2290769
  23. J. Liu, K. W. E. Cheng, and Y. Ye, "A cascaded multilevel inverter based on switched-capacitor for high-frequency ac power distribution system," IEEE Trans. Power Electron., Vol. 22, No. 8, pp. 4219-4230, Aug. 2014.
  24. R. Barzegarkhoo, E. Zamiri, M. Moradzadeh, and H. Shadabi, "Symmetric hybridised design for a novel step-up 19-level inverter," IET Power Electron., Vol. 10, No. 11, pp. 1377-1391, Sep. 2017. https://doi.org/10.1049/iet-pel.2016.0558
  25. E. Zamiri, N. Vosoughi, S. H. Hosseini, R. Barzegarkhoo, and M. Sabahi, "A new cascaded switched-capacitor multilevel inverter based on improved series-parallel conversion with less number of components," IEEE Trans. Ind. Electron., Vol. 63, No. 6, pp. 3582-3594, Jun. 2016. https://doi.org/10.1109/TIE.2016.2529563