DOI QR코드

DOI QR Code

Effect of Korean Red Ginseng extracts on drug-drug interactions

  • 투고 : 2017.06.12
  • 심사 : 2017.08.18
  • 발행 : 2018.07.15

초록

Background: Ginseng has been the subject of many experimental and clinical studies to uncover the diverse biological activities of its constituent compounds. It is a traditional medicine that has been used for its immunostimulatory, antithrombotic, antioxidative, anti-inflammatory, and anticancer effects. Ginseng may interact with concomitant medications and alter metabolism and/or drug transport, which may alter the known efficacy and safety of a drug; thus, the role of ginseng may be controversial when taken with other medications. Methods: We extensively assessed the effects of Korean Red Ginseng (KRG) in rats on the expression of enzymes responsible for drug metabolism [cytochrome p450 (CYP)] and transporters [multiple drug resistance (MDR) and organic anion transporter (OAT)] in vitro and on the pharmacokinetics of two probe drugs, midazolam and fexofenadine, after a 2-wk repeated administration of KRG at different doses. Results: The results showed that 30 mg/kg KRG significantly increased the expression level of CYP3A11 protein in the liver and 100 mg/kg KRG increased both the mRNA and protein expression of OAT1 in the kidney. Additionally, KRG significantly increased the mRNA and protein expression of OAT1, OAT3, and MDR1 in the liver. Although there were no significant changes in the metabolism of midazolam to its major metabolite, 1'-hydroxymidazolam, KRG significantly decreased the systemic exposure of fexofenadine in a dose-dependent manner. Conclusion: Because KRG is used as a health supplement, there is a risk of KRG overdose; thus, a clinical trial of high doses would be useful. The use of KRG in combination with P-glycoprotein substrate drugs should also be carefully monitored.

키워드

참고문헌

  1. Helms S. Cancer prevention and therapeutics: Panax ginseng. Altern Med Rev 2004;9:259-74.
  2. Christensen LP. Ginsenosides chemistry, biosynthesis, analysis, and potential health effects. Adv Food Nutr Res 2009;55:1-99.
  3. Choi SS, Lee JK, Suh HW. Effect of ginsenosides administered intrathecally on the antinociception induced by cold water swimming stress in the mouse. Biol Pharm Bull 2003;26:858-61. https://doi.org/10.1248/bpb.26.858
  4. Deyama T, Nishibe S, Nakazawa Y. Constituents and pharmacological effects of Eucommia and Siberian ginseng. Acta Pharmacol Sin 2001;22:1057-70.
  5. Liao BS, Newmark H, Zhou RP. Neuroprotective effects of ginseng total saponin and ginsenosides Rb1 and Rg1 on spinal cord neurons in vitro. Exp Neurol 2002;173:224-34. https://doi.org/10.1006/exnr.2001.7841
  6. Nishino H, Tokuda H, Li T, Takemura M, Kuchide M, Kanazawa M, Mou XY, Bu P, Takayasu J, Onozuka M, et al. Cancer chemoprevention by ginseng in mouse liver and other organs. J Korean Med Sci 2001;16:S66-9. https://doi.org/10.3346/jkms.2001.16.S.S66
  7. Wang M, Guilbert LJ, Ling L, Li J, Wu Y, Xu S, Pang P, Shan JJ. Immunomodulating activity of CVT-E002, a proprietary extract from North American ginseng (Panax quinquefolium). J Pharm Pharmacol 2001;53:1515-23. https://doi.org/10.1211/0022357011777882
  8. Endres CJ, Hsiao P, Chung FS, Unadkat JD. The role of transporters in drug interactions. Eur J Pharm Sci 2006;27:501-17. https://doi.org/10.1016/j.ejps.2005.11.002
  9. Shitara Y, Sato H, Sugiyama Y. Evaluation of drug-drug interaction in the hepatobiliary and renal transport of drugs. Annu Rev Pharmacol Toxicol 2005;45:689-723. https://doi.org/10.1146/annurev.pharmtox.44.101802.121444
  10. Reynolds JC. The clinical importance of drug interactions with antiulcer therapy. J Clin Gastroenterol 1990;12(Suppl 2):S54-63. https://doi.org/10.1097/00004836-199000000-00010
  11. Kristensen MB. Drug interactions and clinical pharmacokinetics. Clin Pharmacokinet 1976;1:351-72. https://doi.org/10.2165/00003088-197601050-00003
  12. Humphries TJ, Merritt GJ. Review article: drug interactions with agents used to treat acid-related diseases. Aliment Pharmacol Ther 1999;13:18-26. https://doi.org/10.1046/j.1365-2036.1999.00021.x
  13. Chez MG, Bourgeois BF, Pippenger CE, Knowles WD. Pharmacodynamic interactions between phenytoin and valproate: individual and combined antiepileptic and neurotoxic actions in mice. Clin Neuropharmacol 1994;17:32-7. https://doi.org/10.1097/00002826-199402000-00003
  14. Zamek-Gliszczynski MJ, Chu X, Polli JW, Paine MF, Galetin A. Understanding the transport properties of metabolites: case studies and considerations for drug development. Drug Metab Dispos 2014;42:650-64. https://doi.org/10.1124/dmd.113.055558
  15. Vanmeerten E, Verweij J, Schellens JHM. Antineoplastic agents - druginteractions of clinical-significance. Drug Saf 1995;12:168-82. https://doi.org/10.2165/00002018-199512030-00003
  16. Masereeuw R, Russel FGM. Therapeutic implications of renal anionic drug transporters. Pharmacol Ther 2010;126:200-16. https://doi.org/10.1016/j.pharmthera.2010.02.007
  17. VanWert AL, Gionfriddo MR, Sweet DH. Organic anion transporters: discovery, pharmacology, regulation and roles in pathophysiology. Biopharm Drug Dispos 2010;31:1-71.
  18. Koepsell H, Endou H. The SLC22 drug transporter family. Pflugers Arch 2004;447:666-76. https://doi.org/10.1007/s00424-003-1089-9
  19. Rizwan AN, Burckhardt G. Organic anion transporters of the SLC22 family: biopharmaceutical, physiological, and pathological roles. Pharm Res 2007;24:450-70. https://doi.org/10.1007/s11095-006-9181-4
  20. Fattinger K, Roos M, Vergeres P, Holenstein C, Kind B, Masche U, Stocker DN, Braunschweig S, Kullak-Ublick GA, Galeazzi RL, et al. Epidemiology of drug exposure and adverse drug reactions in two Swiss departments of internal medicine. Br J Clin Pharmacol 2000;49:158-67.
  21. Zoppi M, Braunschweig S, Kuenzi UP, Maibach R, Hoigne R. Incidence of lethal adverse drug reactions in the comprehensive hospital drug monitoring, a 20-year survey, 1974-1993, based on the data of Berne/St. Gallen. Eur J Clin Pharmacol 2000;56:427-30. https://doi.org/10.1007/s002280000158
  22. Lin JH, Lu AYH. Inhibition and induction of cytochrome P450 and the clinical implications. Clin Pharmacokinet 1998;35:361-90. https://doi.org/10.2165/00003088-199835050-00003
  23. Durr D, Stieger B, Kullak-Ublick GA, Rentsch KM, Steinert HC, Meier PJ, Fattinger K. St John's Wort induces intestinal P-glycoprotein/MDR1 and intestinal and hepatic CYP3A4. Clin Pharmacol Ther 2000;68:598-604. https://doi.org/10.1067/mcp.2000.112240
  24. Bertz RJ, Granneman GR. Use of in vitro and in vivo data to estimate the likelihood of metabolic pharmacokinetic interactions. Clin Pharmacokinet 1997;32:210-58. https://doi.org/10.2165/00003088-199732030-00004
  25. Rendic S, DiCarlo FJ. Human cytochrome P450 enzymes: A status report summarizing their reactions, substrates, inducers, and inhibitors. Drug Metab Rev 1997;29:413-580. https://doi.org/10.3109/03602539709037591
  26. Henderson GL, Harkey MR, Gershwin ME, Hackman RM, Stern JS, Stresser DM. Effects of ginseng components on c-DNA-expressed cytochrome P450 enzyme catalytic activity. Life Sci 1999;65:PL209-P214.
  27. Liu Y, Zhang JW, Li W, Ma H, Sun J, Deng MC, Yang L. Ginsenoside metabolites, rather than naturally occurring ginsenosides, lead to inhibition of human cytochrome P450 enzymes. Toxicol Sci 2006;91:356-64. https://doi.org/10.1093/toxsci/kfj164
  28. Kawase A, Takeshita F, Yamada A, Murata K, Matsuda H, Samukawa K, Iwaki M. Ginseng extracts facilitate cytochrome p450 xenobiotic metabolism in primary cultures of rat hepatocytes. J Health Sci 2009;55:809-13. https://doi.org/10.1248/jhs.55.809
  29. Wang Y, Ye X, Ma Z, Liang Q, Lu B, Tan H, Xiao C, Zhang B, Gao Y. Induction of cytochrome P450 1A1 expression by ginsenoside Rg1 and Rb1 in HepG2 cells. Eur J Pharmacol 2008;601:73-8. https://doi.org/10.1016/j.ejphar.2008.10.057
  30. Kwon HY, Kim EH, Kim SW, Kim SN, Park JD, Rhee DK. Selective toxicity of ginsenoside Rg3 on multidrug resistant cells by membrane fluidity modulation. Arch Pharm Res 2008;31:171-7. https://doi.org/10.1007/s12272-001-1137-y
  31. Kim DS, Kim Y, Jeon JY, Kim MG. Effect of Red Ginseng on cytochrome P450 and P-glycoprotein activities in healthy volunteers. J Ginseng Res 2016;40:375-81. https://doi.org/10.1016/j.jgr.2015.11.005
  32. Kim MG, Kim Y, Jeon JY, Kim DS. Effect of fermented red ginseng on cytochrome P450 and P-glycoprotein activity in healthy subjects, as evaluated using the cocktail approach. Br J Clin Pharmacol 2016;82:1580-90. https://doi.org/10.1111/bcp.13080
  33. Malati CY, Robertson SM, Hunt JD, Chairez C, Alfaro RM, Kovacs JA, Penzak SR. Influence of Panax ginseng on cytochrome P450 (CYP)3A and P-glycoprotein (P-gp) activity in healthy participants. J Clin Pharmacol 2012;52:932-9. https://doi.org/10.1177/0091270011407194
  34. Bilgi N, Bell K, Ananthakrishnan AN, Atallah E. Imatinib and Panax ginseng: a potential interaction resulting in liver toxicity. Ann Pharmacother 2010;44:926-8. https://doi.org/10.1345/aph.1M715
  35. Wang W, Rayburn ER, Hang J, Zhao Y, Wang H, Zhang R. Anti-lung cancer effects of novel ginsenoside 25-OCH(3)-PPD. Lung Cancer 2009;65:306-11. https://doi.org/10.1016/j.lungcan.2008.11.016
  36. Xu LL, Han T, Wu JZ, Zhang QY, Zhang H, Huang BK, Rahman K, Qin LP. Comparative research of chemical constituents, antifungal and antitumor properties of ether extracts of Panax ginseng and its endophytic fungus. Phytomedicine 2009;16:609-16. https://doi.org/10.1016/j.phymed.2009.03.014
  37. Venkataramanan R, Ramachandran V, Komoroski BJ, Zhang S, Schiff PL, Strom SC. Milk thistle, a herbal supplement, decreases the activity of CYP3A4 and uridine diphosphoglucuronosyl transferase in human hepatocyte cultures. Drug Metab Dispos 2000;28:1270-3.
  38. Vincent J, Harris SI, Foulds G, Dogolo LC, Willavize S, Friedman HL. Lack of effect of grapefruit juice on the pharmacokinetics and pharmacodynamics of amlodipine. Br J Clin Pharmacol 2000;50:455-63.
  39. Wang Z, Gorski JC, Hamman MA, Huang SM, Lesko LJ, Hall SD. The effects of St John's wort (Hypericum perforatum) on human cytochrome P450 activity. Clin Pharmacol Ther 2001;70:317-26.
  40. Vaes LP, Chyka PA. Interactions of warfarin with garlic, ginger, ginkgo, or ginseng: nature of the evidence. Ann Pharmacother 2000;34:1478-82. https://doi.org/10.1345/aph.10031
  41. Goodwin B, Redinbo MR, Kliewer SA. Regulation of cyp3a gene transcription by the pregnane x receptor. Annu Rev Pharmacol Toxicol 2002;42:1-23. https://doi.org/10.1146/annurev.pharmtox.42.111901.111051
  42. Nelson DR, Koymans L, Kamataki T, Stegeman JJ, Feyereisen R, Waxman DJ, Waterman MR, Gotoh O, Coon MJ, Estabrook RW, et al. P450 superfamily: update on new sequences, gene mapping, accession numbers and nomenclature. Pharmacogenetics 1996;6:1-42. https://doi.org/10.1097/00008571-199602000-00002
  43. Hao M, Ba Q, Yin J, Li JQ, Zhao YQ,WangH. Deglycosylated ginsenosides are more potent inducers of CYP1A1, CYP1A2 and CYP3A4 expression in HepG2 cells than glycosylated ginsenosides. Drug Metab Pharmacokinet 2011;26:201-5. https://doi.org/10.2133/dmpk.DMPK-10-NT-056
  44. Li Y, Wang Q, Yao XM, Li Y. Induction of CYP3A4 and MDR1 gene expression by baicalin, baicalein, chlorogenic acid, and ginsenoside Rf through constitutive androstane receptor- and pregnane X receptor-mediated pathways. Eur J Pharmacol 2010;640:46-54. https://doi.org/10.1016/j.ejphar.2010.05.017
  45. Chang TKH, Chen J, Benetton SA. In vitro effect of standardized ginseng extracts and individual ginsenosides on the catalytic activity of human CYP1A1, CYP1A2, and CYP1B1. Drug Metab Dispos 2002;30:378-84. https://doi.org/10.1124/dmd.30.4.378
  46. Ueng YF, Kuo YH, Wang SY, Lin YL, Chen CF. Induction of CYP1A by a diterpene quinone tanshinone IIA isolated from a medicinal herb Salvia miltiorrhiza in C57BL/6J but not in DBA/2J mice. Life Sci 2004;74:885-96. https://doi.org/10.1016/j.lfs.2003.07.035
  47. Zanger UM, Turpeinen M, Klein K, Schwab M. Functional pharmacogenetics/genomics of human cytochromes P450 involved in drug biotransformation. Anal Bioanal Chem 2008;392:1093-108. https://doi.org/10.1007/s00216-008-2291-6
  48. Uwai Y, Ida H, Tsuji Y, Katsura T, Inui K. Renal transport of adefovir, cidofovir, and tenofovir by SLC22A family members (hOAT1, hOAT3, and hOCT2). Pharm Res 2007;24:811-5. https://doi.org/10.1007/s11095-006-9196-x
  49. Zhang Q, Hong M, Duan P, Pan Z, Ma J, You G. Organic anion transporter OAT1 undergoes constitutive and protein kinase C-regulated trafficking through a dynamin- and clathrin-dependent pathway. J Biol Chem 2008;283:32570-9. https://doi.org/10.1074/jbc.M800298200
  50. Vallon V, Rieg T, Ahn SY, Wu W, Eraly SA, Nigam SK. Overlapping in vitro and in vivo specificities of the organic anion transporters OAT1 and OAT3 for loop and thiazide diuretics. Am J Physiol Renal Physiol 2008;294:F867-73. https://doi.org/10.1152/ajprenal.00528.2007
  51. van der Harst P, Bakker SJ, de Boer RA, Wolffenbuttel BH, Johnson T, Caulfield MJ, Navis G. Replication of the five novel loci for uric acid concentrations and potential mediating mechanisms. Hum Mol Genet 2010;19:387-95. https://doi.org/10.1093/hmg/ddp489
  52. Caballero E, Ocana I, Azanza JR, Sadaba B. Fexofenadina: nuevo antihistaminico. Revision de sus caracteristicas practicas [Fexofenadine: a antihistaminic. Review of its practical characteristics]. Rev Med Univ Navarra 1999;43:93-7 [in Spanish].
  53. Kim RB, Wandel C, Leake B, Cvetkovic M, Fromm MF, Dempsey PJ, Roden MM, Belas F,ChaudharyAK, RodenDM, et al. Interrelationship between substrates and inhibitors of human CYP3A and P-glycoprotein. Pharm Res 1999;16:408-14. https://doi.org/10.1023/A:1018877803319
  54. Research CfDEa. Guidance for industry: Estimating the maximum safe starting dose in initial clinical trials for therapeutics in adult healthy volunteers. Center for Drug Evaluation and Research 2005.

피인용 문헌

  1. Antiepileptic and anti-neuroinflammatory effects of red ginseng in an intrahippocampal kainic acid model of temporal lobe epilepsy demonstrated by electroencephalography vol.35, pp.2, 2018, https://doi.org/10.12701/yujm.2018.35.2.192
  2. Impact of Drug Metabolism/Pharmacokinetics and their Relevance Upon Traditional Medicine-based Cardiovascular Drug Research vol.20, pp.7, 2018, https://doi.org/10.2174/1389200220666190618101526
  3. Interactions of ginseng with therapeutic drugs vol.42, pp.10, 2018, https://doi.org/10.1007/s12272-019-01184-3
  4. Ginsenoside Rc Is a New Selective UGT1A9 Inhibitor in Human Liver Microsomes and Recombinant Human UGT Isoforms vol.47, pp.12, 2018, https://doi.org/10.1124/dmd.119.087965
  5. Herb–Drug Interaction of Red Ginseng Extract and Ginsenoside Rc with Valsartan in Rats vol.25, pp.3, 2020, https://doi.org/10.3390/molecules25030622
  6. In vitro modulatory effects of ginsenoside compound K, 20(S)-protopanaxadiol and 20(S)-protopanaxatriol on uridine 5′-diphospho-glucuronosyltransferase activity and expression vol.51, pp.10, 2018, https://doi.org/10.1080/00498254.2021.1963503