DOI QR코드

DOI QR Code

Analysis of protein-protein interaction network based on transcriptome profiling of ovine granulosa cells identifies candidate genes in cyclic recruitment of ovarian follicles

  • Talebi, Reza (Department of Animal Sciences, Faculty of Agriculture, Bu-Ali Sina University) ;
  • Ahmadi, Ahmad (Department of Animal Sciences, Faculty of Agriculture, Bu-Ali Sina University) ;
  • Afraz, Fazlollah (Department of Livestock and Aquaculture Biotechnology, Agricultural Biotechnology Research Institute of North Region)
  • Received : 2018.01.31
  • Accepted : 2018.04.29
  • Published : 2018.06.30

Abstract

After pubertal, cohort of small antral follicles enters to gonadotrophin-sensitive development, called recruited follicles. This study was aimed to identify candidate genes in follicular cyclic recruitment via analysis of protein-protein interaction (PPI) network. Differentially expressed genes (DEGs) in ovine granulosa cells of small antral follicles between follicular and luteal phases were accumulated among gene/protein symbols of the Ensembl annotation. Following directed graphs, PTPN6 and FYN have the highest indegree and outdegree, respectively. Since, these hubs being up-regulated in ovine granulosa cells of small antral follicles during the follicular phase, it represents an accumulation of blood immune cells in follicular phase in comparison with luteal phase. By contrast, the up-regulated hubs in the luteal phase including CDK1, INSRR and TOP2A which stimulated DNA replication and proliferation of granulosa cells, they known as candidate genes of the cyclic recruitment.

Keywords

References

  1. McGee EA, Hsueh AJ. Initial and cyclic recruitment of ovarian follicles. Endocr Rev. 2000;21:200-14.
  2. Shimizu T. Molecular and cellular mechanisms for the regulation of ovarian follicular function in cows. J Reprod Dev. 2016;62:323-9. https://doi.org/10.1262/jrd.2016-044
  3. Strauss JF, Barbieri RL. Yen & Jaffe's reproductive endocrinology E-book: physiology, pathophysiology, and clinical management (Expert Consult - Online and Print). 7th Edition. Philadelphia: Elsevier Inc.; 2013.
  4. Cuiling L, Wei Y, Zhaoyuan H, Yixun L. Granulosa cell proliferation differentiation and its role in follicular development. Chin Sci Bull. 2005;50:2665. https://doi.org/10.1007/BF02899632
  5. Beiki H, Nejati-Javaremi A, Pakdel A, Masoudi-Nejad A, Hu ZL, Reecy JM. Large-scale gene co-expression network as a source of functional annotation for cattle genes. BMC Genomics. 2016;17:846. https://doi.org/10.1186/s12864-016-3176-2
  6. Chindelevitch L, Ziemek D, Enayetallah A, Randhawa R, Sidders B, Brockel C, et al. Causal reasoning on biological networks: interpreting transcriptional changes. Bioinformatics. 2012;28:1114-21. https://doi.org/10.1093/bioinformatics/bts090
  7. Amiri M, Jafari M, AzimzadehJamalkandi S, Davoodi SM. Atopic dermatitis associated protein interaction network lead to new insights in chronic sulfur mustard skin lesion mechanisms. Expert Rev Proteomics. 2013;10:449-60. https://doi.org/10.1586/14789450.2013.841548
  8. Nilsson EE, Savenkova MI, Schindler R, Zhang B, Schadt EE, Skinner MK. Gene bionetwork analysis of ovarian primordial follicle development. PLoS One. 2010;5:e11637. https://doi.org/10.1371/journal.pone.0011637
  9. Nilsson E, Zhang B, Skinner MK. Gene bionetworks that regulate ovarian primordial follicle assembly. BMC Genomics. 2013;14:496. https://doi.org/10.1186/1471-2164-14-496
  10. Xue Z, Huang K, Cai C, Cai L, Jiang CY, Feng Y, et al. Genetic programs in human and mouse early embryos revealed by single-cell RNA sequencing. Nature. 2013;500:593-7. https://doi.org/10.1038/nature12364
  11. Jiang Z, Sun J, Dong H, Luo O, Zheng X, Obergfell C, et al. Transcriptional profiles of bovine in vivo pre-implantation development. BMC Genomics. 2014;15:756. https://doi.org/10.1186/1471-2164-15-756
  12. Labrecque R, Fournier E, Sirard MA. Transcriptome analysis of bovine oocytes from distinct follicle sizes: insights from correlation network analysis. Mol Reprod Dev. 2016;83:558-69. https://doi.org/10.1002/mrd.22651
  13. Bahrami A, Miraie-Ashtiani SR, Sadeghi M, Najafi A. miRNA-mRNA network involved in folliculogenesis interactome: systems biology approach. Reproduction. 2017;154:51-65. https://doi.org/10.1530/REP-17-0049
  14. Kotni MK, Zhao M, Wei DQ. Gene expression profiles and protein-protein interaction networks in amyotrophic lateral sclerosis patients with C9orf72 mutation. Orphanet J Rare Dis. 2016;11:148. https://doi.org/10.1186/s13023-016-0531-y
  15. Lin CY, Lee TL, Chiu YY, Lin YW, Lo YS, Lin CT, et al. Module organization and variance in protein-protein interaction networks. Sci Rep. 2015;5:9386. https://doi.org/10.1038/srep09386
  16. Malik A, Lee EJ, Jan AT, Ahmad S, Cho KH, Kim J, et al. Network analysis for the identification of differentially expressed hub genes using myogenin knock-down muscle satellite cells. PLoS One. 2015;10:e0133597. https://doi.org/10.1371/journal.pone.0133597
  17. Nai W, Threapleton D, Lu J, Zhang K, Wu H, Fu Y, et al. Identification of novel genes and pathways in carotid atheroma using integrated bioinformatic methods. Sci Rep. 2016;6:18764. https://doi.org/10.1038/srep18764
  18. Talebi R, Ahmadi A, Afraz F, Abdoli R. Parkinson's disease and lactoferrin: analysis of dependent protein networks. Gene Rep. 2016;4:177-83. https://doi.org/10.1016/j.genrep.2016.05.006
  19. Xu Z, Zhou Y, Cao Y, Dinh TL, Wan J, Zhao M. Identification of candidate biomarkers and analysis of prognostic values in ovarian cancer by integrated bioinformatics analysis. Med Oncol. 2016;33:130. https://doi.org/10.1007/s12032-016-0840-y
  20. Talebi R, Ahmadi A, Afraz F, Sarry J, Plisson-Petit F, Genet C, Fabre S. Transcriptome analysis of ovine granulosa cells reveals differences between small antral follicles collected during the follicular and luteal phases. Theriogenology. 2018;108:103-17. https://doi.org/10.1016/j.theriogenology.2017.11.027
  21. Szklarczyk D, Franceschini A, Wyder S, Forslund K, Heller D, Huerta-Cepas J, et al. STRING v10: protein-protein interaction networks, integrated over the tree of life. Nucleic Acids Res. 2015;43:447-52. https://doi.org/10.1093/nar/gku1003
  22. Lotia S, Montojo J, Dong Y, Bader GD, Pico AR. Cytoscape app store. Bioinformatics. 2013;29:1350-1. https://doi.org/10.1093/bioinformatics/btt138
  23. Bader GD, Hogue CW. An automated method for finding molecular complexes in large protein interaction networks. BMC Bioinformatics. 2003;4:2. https://doi.org/10.1186/1471-2105-4-2
  24. Bindea G, Mlecnik B, Hackl H, Charoentong P, Tosolini M, Kirilovsky A, et al. ClueGO: a Cytoscape plug-in to decipher functionally grouped gene ontology and pathway annotation networks. Bioinformatics. 2009;15:1091-3.
  25. Benjamini Y, Hochberg Y. Controlling the false discovery rate: a practical and powerful approach to multiple testing. J R Stat Soc Series B Stat Methodol. 1995;57:289-300.
  26. Zhuang DY, Jiang L, He QQ, Zhou P, Yue T. Identification of hub subnetwork based on topological features of genes in breast cancer. Int J Mol Med. 2015;35:664-74. https://doi.org/10.3892/ijmm.2014.2057
  27. Nimmerjahn F, Ravetch JV. Fcgamma receptors as regulators of immune responses. Nat Rev Immunol. 2008;8:34-47. https://doi.org/10.1038/nri2206
  28. Hatzirodos N, Hummitzsch K, Irving-Rodgers HF, Harland ML, Morris SE, Rodgers RJ. Transcriptome profiling of granulosa cells from bovine ovarian follicles during atresia. BMC Genomics. 2014;15:40. https://doi.org/10.1186/1471-2164-15-40
  29. Terenina E, Fabre S, Bonnet A, Monniaux D, Robert-Granie C, SanCristobal M, et al. Differentially expressed genes and gene networks involved in pig ovarian follicular atresia. Physiol Genomics. 2017;49:67-80. https://doi.org/10.1152/physiolgenomics.00069.2016
  30. Perez-Guijarro E, Karras P, Cifdaloz M, Martinez-Herranz R, Canon E, Grana O, et al. Lineage-specific roles of the cytoplasmic polyadenylation factor CPEB4 in the regulation of melanoma drivers. Nat Commun. 2016;7:13418. https://doi.org/10.1038/ncomms13418
  31. Tamaichi H, Sato M, Porter AC, Shimizu T, Mizutani S, Takagi M. Ataxia telangiectasia mutated-dependent regulation of topoisomerase II alpha expression and sensitivity to topoisomerase II inhibitor. Cancer Sci. 2013;104:178-84. https://doi.org/10.1111/cas.12067
  32. Baerwald AR, Adams GP, Pierson RA. Ovarian antral folliculogenesis during the human menstrual cycle: a review. Hum Reprod Update. 2012;18:73-91. https://doi.org/10.1093/humupd/dmr039

Cited by

  1. Construction of protein-protein interaction network based on transcriptome profiling of ovine granulosa cells during the sheep’s anestrus phase vol.13, pp.3, 2018, https://doi.org/10.1007/s11515-018-1499-x
  2. Genetic Analyses of Tanzanian Local Chicken Ecotypes Challenged with Newcastle Disease Virus vol.10, pp.7, 2018, https://doi.org/10.3390/genes10070546
  3. Characterization of cadmium-responsive transcription factors in wolf spider Pardosa pseudoannulata vol.268, pp.None, 2018, https://doi.org/10.1016/j.chemosphere.2020.129239