Acknowledgement
Supported by : Sungshin University
References
- Cao J, Han J, Xiao H, Qiao J, Han M. Effect of tea polyphenol compounds on anticancer drugs in terms of anti-tumor activity, toxicology, and pharmacokinetics. Nutrients 2016;8:E762. https://doi.org/10.3390/nu8120762
- Nakayama M, Suzuki K, Toda M, Okubo S, Hara Y, Shimamura T. Inhibition of the infectivity of influenza virus by tea polyphenols. Antiviral Res 1993;21:289-99. https://doi.org/10.1016/0166-3542(93)90008-7
- Kim M, Kim SY, Lee HW, et al. Inhibition of influenza virus internalization by (-)-epigallocatechin-3-gallate. Antiviral Res 2013;100:460-72. https://doi.org/10.1016/j.antiviral.2013.08.002
- Song JM, Lee KH, Seong BL. Antiviral effect of catechins in green tea on influenza virus. Antiviral Res 2005;68:66-74. https://doi.org/10.1016/j.antiviral.2005.06.010
- Yamaguchi K, Honda M, Ikigai H, Hara Y, Shimamura T. Inhibitory effects of (-)-epigallocatechin gallate on the life cycle of human immunodeficiency virus type 1 (HIV-1). Antiviral Res 2002;53:19-34. https://doi.org/10.1016/S0166-3542(01)00189-9
- Fassina G, Buffa A, Benelli R, Varnier OE, Noonan DM, Albini A. Polyphenolic antioxidant (-)-epigallocatechin-3-gallate from green tea as a candidate anti-HIV agent. AIDS 2002;16:939-41. https://doi.org/10.1097/00002030-200204120-00020
- Williamson MP, McCormick TG, Nance CL, Shearer WT. Epigallocatechin gallate, the main polyphenol in green tea, binds to the T-cell receptor, CD4: potential for HIV-1 therapy. J Allergy Clin Immunol 2006;118:1369-74. https://doi.org/10.1016/j.jaci.2006.08.016
- Weber C, Sliva K, von Rhein C, Kummerer BM, Schnierle BS. The green tea catechin, epigallocatechin gallate inhibits chikungunya virus infection. Antiviral Res 2015;113:1-3. https://doi.org/10.1016/j.antiviral.2014.11.001
- Lyu SY, Rhim JY, Park WB. Antiherpetic activities of flavonoids against herpes simplex virus type 1 (HSV-1) and type 2 (HSV-2) in vitro. Arch Pharm Res 2005;28:1293-301. https://doi.org/10.1007/BF02978215
- Isaacs CE, Wen GY, Xu W, et al. Epigallocatechin gallate inactivates clinical isolates of herpes simplex virus. Antimicrob Agents Chemother 2008;52:962-70. https://doi.org/10.1128/AAC.00825-07
- Isaacs CE, Xu W, Merz G, Hillier S, Rohan L, Wen GY. Digallate dimers of (-)-epigallocatechin gallate inactivate herpes simplex virus. Antimicrob Agents Chemother 2011;55:5646-53. https://doi.org/10.1128/AAC.05531-11
- Shepard CW, Finelli L, Alter MJ. Global epidemiology of hepatitis C virus infection. Lancet Infect Dis 2005;5:558-67. https://doi.org/10.1016/S1473-3099(05)70216-4
- Kenny-Walsh E. The natural history of hepatitis C virus infection. Clin Liver Dis 2001;5:969-77. https://doi.org/10.1016/S1089-3261(05)70204-X
- Alter MJ. Epidemiology of hepatitis C. Hepatology 1997;26(3 Suppl 1):62S-5S. https://doi.org/10.1002/hep.510260711
- Manns MP, Wedemeyer H, Cornberg M. Treating viral hepatitis C: efficacy, side effects, and complications. Gut 2006;55:1350-9. https://doi.org/10.1136/gut.2005.076646
- Chen C, Qiu H, Gong J, et al. (-)-Epigallocatechin-3-gallate inhibits the replication cycle of hepatitis C virus. Arch Virol 2012;157:1301-12. https://doi.org/10.1007/s00705-012-1304-0
- Fukazawa H, Suzuki T, Wakita T, Murakami Y. A cell-based, microplate colorimetric screen identifies 7,8-benzoflavone and green tea gallate catechins as inhibitors of the hepatitis C virus. Biol Pharm Bull 2012;35:1320-7. https://doi.org/10.1248/bpb.b12-00251
- Rivero-Buceta E, Carrero P, Doyaguez EG, et al. Linear and branched alkyl-esters and amides of gallic acid and other (mono-, di- and tri-) hydroxy benzoyl derivatives as promising anti-HCV inhibitors. Eur J Med Chem 2015;92:656-71. https://doi.org/10.1016/j.ejmech.2015.01.033
- Xu J, Wang J, Deng F, Hu Z, Wang H. Green tea extract and its major component epigallocatechin gallate inhibits hepatitis B virus in vitro. Antiviral Res 2008;78:242-9. https://doi.org/10.1016/j.antiviral.2007.11.011
- Ye P, Zhang S, Zhao L, et al. Tea polyphenols exerts antihepatitis B virus effects in a stably HBV-transfected cell line. J Huazhong Univ Sci Technolog Med Sci 2009;29:169-72. https://doi.org/10.1007/s11596-009-0206-1
- He W, Li LX, Liao QJ, Liu CL, Chen XL. Epigallocatechin gallate inhibits HBV DNA synthesis in a viral replicationinducible cell line. World J Gastroenterol 2011;17:1507-14. https://doi.org/10.3748/wjg.v17.i11.1507
- Ciesek S, von Hahn T, Colpitts CC, et al. The green tea polyphenol, epigallocatechin-3-gallate, inhibits hepatitis C virus entry. Hepatology 2011;54:1947-55. https://doi.org/10.1002/hep.24610
- Calland N, Albecka A, Belouzard S, et al. (-)-Epigallocatechin-3-gallate is a new inhibitor of hepatitis C virus entry. Hepatology 2012;55:720-9. https://doi.org/10.1002/hep.24803
- Calland N, Sahuc ME, Belouzard S, et al. Polyphenols inhibit hepatitis C virus entry by a new mechanism of action. J Virol 2015;89:10053-63. https://doi.org/10.1128/JVI.01473-15
- Colpitts CC, Schang LM. A small molecule inhibits virion attachment to heparan sulfate- or sialic acid-containing glycans. J Virol 2014;88:7806-17. https://doi.org/10.1128/JVI.00896-14
- Wang Y, Li J, Wang X, et al. (-)-Epigallocatechin-3-gallate enhances hepatitis C virus double-stranded RNA intermediates-triggered innate immune responses in hepatocytes. Sci Rep 2016;6:21595. https://doi.org/10.1038/srep21595
- Wong J, Zhang J, Si X, et al. Autophagosome supports coxsackievirus B3 replication in host cells. J Virol 2008;82:9143-53. https://doi.org/10.1128/JVI.00641-08
- Li J, Liu Y, Wang Z, et al. Subversion of cellular autophagy machinery by hepatitis B virus for viral envelopment. J Virol 2011;85:6319-33. https://doi.org/10.1128/JVI.02627-10
- Sir D, Kuo CF, Tian Y, et al. Replication of hepatitis C virus RNA on autophagosomal membranes. J Biol Chem 2012; 287:18036-43. https://doi.org/10.1074/jbc.M111.320085
- Tanida I. Autophagy basics. Microbiol Immunol 2011;55:1-11. https://doi.org/10.1111/j.1348-0421.2010.00271.x
- Zhong L, Hu J, Shu W, Gao B, Xiong S. Epigallocatechin-3-gallate opposes HBV-induced incomplete autophagy by enhancing lysosomal acidification, which is unfavorable for HBV replication. Cell Death Dis 2015;6:e1770. https://doi.org/10.1038/cddis.2015.136
- Liao PC, Ng LT, Lin LT, Richardson CD, Wang GH, Lin CC. Resveratrol arrests cell cycle and induces apoptosis in human hepatocellular carcinoma Huh-7 cells. J Med Food 2010;13:1415-23. https://doi.org/10.1089/jmf.2010.1126
- Mekky RY, El-Ekiaby NM, Hamza MT, et al. Mir-194 is a hepatocyte gate keeper hindering HCV entry through targeting CD81 receptor. J Infect 2015;70:78-87. https://doi.org/10.1016/j.jinf.2014.08.013
- Lee JC, Tseng CK, Wu SF, Chang FR, Chiu CC, Wu YC. San-Huang-Xie-Xin-Tang extract suppresses hepatitis C virus replication and virus-induced cyclooxygenase-2 expression. J Viral Hepat 2011;18:e315-24. https://doi.org/10.1111/j.1365-2893.2010.01424.x
- Lu L, Wei L, Peng G, et al. NS3 protein of hepatitis C virus regulates cyclooxygenase-2 expression through multiple signaling pathways. Virology 2008;371:61-70. https://doi.org/10.1016/j.virol.2007.09.025
- Nunez O, Fernandez-Martinez A, Majano PL, et al. Increased intrahepatic cyclooxygenase 2, matrix metalloproteinase 2, and matrix metalloproteinase 9 expression is associated with progressive liver disease in chronic hepatitis C virus infection: role of viral core and NS5A proteins. Gut 2004;53:1665-72. https://doi.org/10.1136/gut.2003.038364
- Giannitrapani L, Ingrao S, Soresi M, et al. Cyclooxygenase-2 expression in chronic liver diseases and hepatocellular carcinoma: an immunohistochemical study. Ann N Y Acad Sci 2009;1155:293-9. https://doi.org/10.1111/j.1749-6632.2009.03698.x
- Roh C, Jo SK. (-)-Epigallocatechin gallate inhibits hepatitis C virus (HCV) viral protein NS5B. Talanta 2011;85:2639-42. https://doi.org/10.1016/j.talanta.2011.08.035
- Fatima K, Mathew S, Suhail M, et al. Docking studies of Pakistani HCV NS3 helicase: a possible antiviral drug target. PLoS One 2014;9:e106339. https://doi.org/10.1371/journal.pone.0106339
- Huang HC, Chen CC, Chang WC, Tao MH, Huang C. Entry of hepatitis B virus into immortalized human primary hepatocytes by clathrin-dependent endocytosis. J Virol 2012;86:9443-53. https://doi.org/10.1128/JVI.00873-12
- Huang HC, Tao MH, Hung TM, Chen JC, Lin ZJ, Huang C. (-)-Epigallocatechin-3-gallate inhibits entry of hepatitis B virus into hepatocytes. Antiviral Res 2014;111:100-11. https://doi.org/10.1016/j.antiviral.2014.09.009
Cited by
- Discovery of Plant Viruses From Tea Plant ( Camellia sinensis (L.) O. Kuntze) by Metagenomic Sequencing vol.9, pp.None, 2018, https://doi.org/10.3389/fmicb.2018.02175
- Computational Molecular Docking and X-ray Crystallographic Studies of Catechins in New Drug Design Strategies vol.23, pp.8, 2018, https://doi.org/10.3390/molecules23082020
- Multilevel structure-activity profiling reveals multiple green tea compound families that each modulate ubiquitin-activating enzyme and ubiquitination by a distinct mechanism vol.9, pp.None, 2019, https://doi.org/10.1038/s41598-019-48888-6
- Schinus terebenthifolius Raddi extracts: From sunscreen activity toward protection of the placenta to Zika virus infection, new uses for a well-known medicinal plant vol.152, pp.None, 2018, https://doi.org/10.1016/j.indcrop.2020.112503
- Can phytotherapy with polyphenols serve as a powerful approach for the prevention and therapy tool of novel coronavirus disease 2019 (COVID-19)? vol.319, pp.4, 2018, https://doi.org/10.1152/ajpendo.00298.2020
- Evaluation of flavonoids as 2019-nCoV cell entry inhibitor through molecular docking and pharmacological analysis vol.7, pp.3, 2018, https://doi.org/10.1016/j.heliyon.2021.e06515
- A Review on the Biological Activity of Camellia Species vol.26, pp.8, 2021, https://doi.org/10.3390/molecules26082178