DOI QR코드

DOI QR Code

Anti-infective potential of catechins and their derivatives against viral hepatitis

  • Song, Jae-Min (Department of Global Medical Science, Health & Wellness College, Sungshin University)
  • Received : 2017.12.29
  • Accepted : 2018.01.10
  • Published : 2018.01.31

Abstract

Polyphenols including catechins from green tea (Camellia sinensis) have been reported to have anti-infective activities against a broad spectrum of viruses and other pathogens. During the last two decades, antiviral activities of catechins with different modes of action have been demonstrated on diverse families of viruses, such as human immunodeficiency virus, Herpes simplex virus, influenza virus, hepatitis B and C virus. In this study, we focused on the antiviral properties of catechins and their derivatives against viral hepatitis which have become a key public health issue due to their serious impact on human health with liver diseases.

Keywords

Acknowledgement

Supported by : Sungshin University

References

  1. Cao J, Han J, Xiao H, Qiao J, Han M. Effect of tea polyphenol compounds on anticancer drugs in terms of anti-tumor activity, toxicology, and pharmacokinetics. Nutrients 2016;8:E762. https://doi.org/10.3390/nu8120762
  2. Nakayama M, Suzuki K, Toda M, Okubo S, Hara Y, Shimamura T. Inhibition of the infectivity of influenza virus by tea polyphenols. Antiviral Res 1993;21:289-99. https://doi.org/10.1016/0166-3542(93)90008-7
  3. Kim M, Kim SY, Lee HW, et al. Inhibition of influenza virus internalization by (-)-epigallocatechin-3-gallate. Antiviral Res 2013;100:460-72. https://doi.org/10.1016/j.antiviral.2013.08.002
  4. Song JM, Lee KH, Seong BL. Antiviral effect of catechins in green tea on influenza virus. Antiviral Res 2005;68:66-74. https://doi.org/10.1016/j.antiviral.2005.06.010
  5. Yamaguchi K, Honda M, Ikigai H, Hara Y, Shimamura T. Inhibitory effects of (-)-epigallocatechin gallate on the life cycle of human immunodeficiency virus type 1 (HIV-1). Antiviral Res 2002;53:19-34. https://doi.org/10.1016/S0166-3542(01)00189-9
  6. Fassina G, Buffa A, Benelli R, Varnier OE, Noonan DM, Albini A. Polyphenolic antioxidant (-)-epigallocatechin-3-gallate from green tea as a candidate anti-HIV agent. AIDS 2002;16:939-41. https://doi.org/10.1097/00002030-200204120-00020
  7. Williamson MP, McCormick TG, Nance CL, Shearer WT. Epigallocatechin gallate, the main polyphenol in green tea, binds to the T-cell receptor, CD4: potential for HIV-1 therapy. J Allergy Clin Immunol 2006;118:1369-74. https://doi.org/10.1016/j.jaci.2006.08.016
  8. Weber C, Sliva K, von Rhein C, Kummerer BM, Schnierle BS. The green tea catechin, epigallocatechin gallate inhibits chikungunya virus infection. Antiviral Res 2015;113:1-3. https://doi.org/10.1016/j.antiviral.2014.11.001
  9. Lyu SY, Rhim JY, Park WB. Antiherpetic activities of flavonoids against herpes simplex virus type 1 (HSV-1) and type 2 (HSV-2) in vitro. Arch Pharm Res 2005;28:1293-301. https://doi.org/10.1007/BF02978215
  10. Isaacs CE, Wen GY, Xu W, et al. Epigallocatechin gallate inactivates clinical isolates of herpes simplex virus. Antimicrob Agents Chemother 2008;52:962-70. https://doi.org/10.1128/AAC.00825-07
  11. Isaacs CE, Xu W, Merz G, Hillier S, Rohan L, Wen GY. Digallate dimers of (-)-epigallocatechin gallate inactivate herpes simplex virus. Antimicrob Agents Chemother 2011;55:5646-53. https://doi.org/10.1128/AAC.05531-11
  12. Shepard CW, Finelli L, Alter MJ. Global epidemiology of hepatitis C virus infection. Lancet Infect Dis 2005;5:558-67. https://doi.org/10.1016/S1473-3099(05)70216-4
  13. Kenny-Walsh E. The natural history of hepatitis C virus infection. Clin Liver Dis 2001;5:969-77. https://doi.org/10.1016/S1089-3261(05)70204-X
  14. Alter MJ. Epidemiology of hepatitis C. Hepatology 1997;26(3 Suppl 1):62S-5S. https://doi.org/10.1002/hep.510260711
  15. Manns MP, Wedemeyer H, Cornberg M. Treating viral hepatitis C: efficacy, side effects, and complications. Gut 2006;55:1350-9. https://doi.org/10.1136/gut.2005.076646
  16. Chen C, Qiu H, Gong J, et al. (-)-Epigallocatechin-3-gallate inhibits the replication cycle of hepatitis C virus. Arch Virol 2012;157:1301-12. https://doi.org/10.1007/s00705-012-1304-0
  17. Fukazawa H, Suzuki T, Wakita T, Murakami Y. A cell-based, microplate colorimetric screen identifies 7,8-benzoflavone and green tea gallate catechins as inhibitors of the hepatitis C virus. Biol Pharm Bull 2012;35:1320-7. https://doi.org/10.1248/bpb.b12-00251
  18. Rivero-Buceta E, Carrero P, Doyaguez EG, et al. Linear and branched alkyl-esters and amides of gallic acid and other (mono-, di- and tri-) hydroxy benzoyl derivatives as promising anti-HCV inhibitors. Eur J Med Chem 2015;92:656-71. https://doi.org/10.1016/j.ejmech.2015.01.033
  19. Xu J, Wang J, Deng F, Hu Z, Wang H. Green tea extract and its major component epigallocatechin gallate inhibits hepatitis B virus in vitro. Antiviral Res 2008;78:242-9. https://doi.org/10.1016/j.antiviral.2007.11.011
  20. Ye P, Zhang S, Zhao L, et al. Tea polyphenols exerts antihepatitis B virus effects in a stably HBV-transfected cell line. J Huazhong Univ Sci Technolog Med Sci 2009;29:169-72. https://doi.org/10.1007/s11596-009-0206-1
  21. He W, Li LX, Liao QJ, Liu CL, Chen XL. Epigallocatechin gallate inhibits HBV DNA synthesis in a viral replicationinducible cell line. World J Gastroenterol 2011;17:1507-14. https://doi.org/10.3748/wjg.v17.i11.1507
  22. Ciesek S, von Hahn T, Colpitts CC, et al. The green tea polyphenol, epigallocatechin-3-gallate, inhibits hepatitis C virus entry. Hepatology 2011;54:1947-55. https://doi.org/10.1002/hep.24610
  23. Calland N, Albecka A, Belouzard S, et al. (-)-Epigallocatechin-3-gallate is a new inhibitor of hepatitis C virus entry. Hepatology 2012;55:720-9. https://doi.org/10.1002/hep.24803
  24. Calland N, Sahuc ME, Belouzard S, et al. Polyphenols inhibit hepatitis C virus entry by a new mechanism of action. J Virol 2015;89:10053-63. https://doi.org/10.1128/JVI.01473-15
  25. Colpitts CC, Schang LM. A small molecule inhibits virion attachment to heparan sulfate- or sialic acid-containing glycans. J Virol 2014;88:7806-17. https://doi.org/10.1128/JVI.00896-14
  26. Wang Y, Li J, Wang X, et al. (-)-Epigallocatechin-3-gallate enhances hepatitis C virus double-stranded RNA intermediates-triggered innate immune responses in hepatocytes. Sci Rep 2016;6:21595. https://doi.org/10.1038/srep21595
  27. Wong J, Zhang J, Si X, et al. Autophagosome supports coxsackievirus B3 replication in host cells. J Virol 2008;82:9143-53. https://doi.org/10.1128/JVI.00641-08
  28. Li J, Liu Y, Wang Z, et al. Subversion of cellular autophagy machinery by hepatitis B virus for viral envelopment. J Virol 2011;85:6319-33. https://doi.org/10.1128/JVI.02627-10
  29. Sir D, Kuo CF, Tian Y, et al. Replication of hepatitis C virus RNA on autophagosomal membranes. J Biol Chem 2012; 287:18036-43. https://doi.org/10.1074/jbc.M111.320085
  30. Tanida I. Autophagy basics. Microbiol Immunol 2011;55:1-11. https://doi.org/10.1111/j.1348-0421.2010.00271.x
  31. Zhong L, Hu J, Shu W, Gao B, Xiong S. Epigallocatechin-3-gallate opposes HBV-induced incomplete autophagy by enhancing lysosomal acidification, which is unfavorable for HBV replication. Cell Death Dis 2015;6:e1770. https://doi.org/10.1038/cddis.2015.136
  32. Liao PC, Ng LT, Lin LT, Richardson CD, Wang GH, Lin CC. Resveratrol arrests cell cycle and induces apoptosis in human hepatocellular carcinoma Huh-7 cells. J Med Food 2010;13:1415-23. https://doi.org/10.1089/jmf.2010.1126
  33. Mekky RY, El-Ekiaby NM, Hamza MT, et al. Mir-194 is a hepatocyte gate keeper hindering HCV entry through targeting CD81 receptor. J Infect 2015;70:78-87. https://doi.org/10.1016/j.jinf.2014.08.013
  34. Lee JC, Tseng CK, Wu SF, Chang FR, Chiu CC, Wu YC. San-Huang-Xie-Xin-Tang extract suppresses hepatitis C virus replication and virus-induced cyclooxygenase-2 expression. J Viral Hepat 2011;18:e315-24. https://doi.org/10.1111/j.1365-2893.2010.01424.x
  35. Lu L, Wei L, Peng G, et al. NS3 protein of hepatitis C virus regulates cyclooxygenase-2 expression through multiple signaling pathways. Virology 2008;371:61-70. https://doi.org/10.1016/j.virol.2007.09.025
  36. Nunez O, Fernandez-Martinez A, Majano PL, et al. Increased intrahepatic cyclooxygenase 2, matrix metalloproteinase 2, and matrix metalloproteinase 9 expression is associated with progressive liver disease in chronic hepatitis C virus infection: role of viral core and NS5A proteins. Gut 2004;53:1665-72. https://doi.org/10.1136/gut.2003.038364
  37. Giannitrapani L, Ingrao S, Soresi M, et al. Cyclooxygenase-2 expression in chronic liver diseases and hepatocellular carcinoma: an immunohistochemical study. Ann N Y Acad Sci 2009;1155:293-9. https://doi.org/10.1111/j.1749-6632.2009.03698.x
  38. Roh C, Jo SK. (-)-Epigallocatechin gallate inhibits hepatitis C virus (HCV) viral protein NS5B. Talanta 2011;85:2639-42. https://doi.org/10.1016/j.talanta.2011.08.035
  39. Fatima K, Mathew S, Suhail M, et al. Docking studies of Pakistani HCV NS3 helicase: a possible antiviral drug target. PLoS One 2014;9:e106339. https://doi.org/10.1371/journal.pone.0106339
  40. Huang HC, Chen CC, Chang WC, Tao MH, Huang C. Entry of hepatitis B virus into immortalized human primary hepatocytes by clathrin-dependent endocytosis. J Virol 2012;86:9443-53. https://doi.org/10.1128/JVI.00873-12
  41. Huang HC, Tao MH, Hung TM, Chen JC, Lin ZJ, Huang C. (-)-Epigallocatechin-3-gallate inhibits entry of hepatitis B virus into hepatocytes. Antiviral Res 2014;111:100-11. https://doi.org/10.1016/j.antiviral.2014.09.009

Cited by

  1. Discovery of Plant Viruses From Tea Plant ( Camellia sinensis (L.) O. Kuntze) by Metagenomic Sequencing vol.9, pp.None, 2018, https://doi.org/10.3389/fmicb.2018.02175
  2. Computational Molecular Docking and X-ray Crystallographic Studies of Catechins in New Drug Design Strategies vol.23, pp.8, 2018, https://doi.org/10.3390/molecules23082020
  3. Multilevel structure-activity profiling reveals multiple green tea compound families that each modulate ubiquitin-activating enzyme and ubiquitination by a distinct mechanism vol.9, pp.None, 2019, https://doi.org/10.1038/s41598-019-48888-6
  4. Schinus terebenthifolius Raddi extracts: From sunscreen activity toward protection of the placenta to Zika virus infection, new uses for a well-known medicinal plant vol.152, pp.None, 2018, https://doi.org/10.1016/j.indcrop.2020.112503
  5. Can phytotherapy with polyphenols serve as a powerful approach for the prevention and therapy tool of novel coronavirus disease 2019 (COVID-19)? vol.319, pp.4, 2018, https://doi.org/10.1152/ajpendo.00298.2020
  6. Evaluation of flavonoids as 2019-nCoV cell entry inhibitor through molecular docking and pharmacological analysis vol.7, pp.3, 2018, https://doi.org/10.1016/j.heliyon.2021.e06515
  7. A Review on the Biological Activity of Camellia Species vol.26, pp.8, 2021, https://doi.org/10.3390/molecules26082178