DOI QR코드

DOI QR Code

Calcium-dependent protein kinases are potential targets for Toxoplasma gondii vaccine

  • Foroutan, Masoud (Department of Parasitology, Faculty of Medical Sciences, Tarbiat Modares University) ;
  • Ghaffarifar, Fatemeh (Department of Parasitology, Faculty of Medical Sciences, Tarbiat Modares University)
  • Received : 2017.12.16
  • Accepted : 2018.01.06
  • Published : 2018.01.31

Abstract

Toxoplasma gondii belongs to the Apicomplexa phylum that caused a widespread zoonotic infection in wide range of intermediate hosts. Over one-third of the world's population are latently infected with T. gondii and carry it. The complex life cycle of T. gondii indicates the presence of a plurality of antigenic epitopes. During the recent years, continuous efforts of scientists have made precious advances to elucidate the different aspects of the cell and molecular biology of T. gondii. Despite of great progresses, the development of vaccine candidates for preventing of T. gondii infection in men and animals is still remains a challenge. The calcium-dependent protein kinases (CDPKs) belongs to the superfamily of kinases, which restricted to the apicomplexans, ciliates, and plants. It has been documented that they contribute several functions in the life cycle of T. gondii such as gliding motility, cell invasion, and egress as well as some other critical developmental processes. In current paper, we reviewed the recent progress concerning the development of CDPK-based vaccines against acute and chronic T. gondii.

Keywords

Acknowledgement

Supported by : Tarbiat Modares University

References

  1. Nasiri V, Teymurzadeh S, Karimi G, Nasiri M. Molecular detection of Toxoplasma gondii in snakes. Exp Parasitol 2016;169:102-6. https://doi.org/10.1016/j.exppara.2016.08.002
  2. Dubey JP. The history of Toxoplasma gondii: the first 100 years. J Eukaryot Microbiol 2008;55:467-75. https://doi.org/10.1111/j.1550-7408.2008.00345.x
  3. Foroutan M, Dalvand S, Daryani A, et al. Rolling up the pieces of a puzzle: a systematic review and meta-analysis of the prevalence of toxoplasmosis in Iran. Alex J Med 2017 Jun 23 [Epub]. https://doi.org/10.4132/10.1016/j.ajme.2017.06.003.
  4. Rostami A, Riahi SM, Fakhri Y, et al. The global seroprevalence of Toxoplasma gondii among wild boars: a system atic review and meta-analysis. Vet Parasitol 2017;244:12-20. https://doi.org/10.1016/j.vetpar.2017.07.013
  5. Khademvatan S, Foroutan M, Hazrati-Tappeh K, et al. Toxoplasmosis in rodents: a systematic review and meta-analysis in Iran. J Infect Public Health 2017;10:487-93. https://doi.org/10.1016/j.jiph.2017.01.021
  6. Foroutan M, Majidiani H. Toxoplasma gondii: are there any implications for routine blood screening? Int J Infect 2017 Oc 31 [Epub]. https://doi.org/10.5812/iji.62886.
  7. Foroutan-Rad M, Majidiani H, Dalvand S, et al. Toxoplasmosis in blood donors: a systematic review and meta-analysis. Transfus Med Rev 2016;30:116-22. https://doi.org/10.1016/j.tmrv.2016.03.002
  8. Nicolle C, Manceaux L. Sur une infection a corps de Leishman (ou organismes voisins) du gondi. CR Acad Sci 1908;147:763-6.
  9. Pappas G, Roussos N, Falagas ME. Toxoplasmosis snapshots: global status of Toxoplasma gondii seroprevalence and implications for pregnancy and congenital toxoplasmosis. Int J Parasitol 2009;39:1385-94. https://doi.org/10.1016/j.ijpara.2009.04.003
  10. Wang ZD, Liu HH, Ma ZX, et al. Toxoplasma gondii infection in immunocompromised patients: a systematic review and meta-analysis. Front Microbiol 2017;8:389.
  11. Sullivan WJ Jr, Jeffers V. Mechanisms of Toxoplasma gondii persistence and latency. FEMS Microbiol Rev 2012;36:717-33. https://doi.org/10.1111/j.1574-6976.2011.00305.x
  12. Weiss LM, Dubey JP. Toxoplasmosis: a history of clinical observations. Int J Parasitol 2009;39:895-901. https://doi.org/10.1016/j.ijpara.2009.02.004
  13. Mohammadnejad F, Ghaffarifar F, Mobedi I. HIV and parasite co-infection epidemiology: a scope since 2005. Rev Med Microbiol 2015;26:20-5. https://doi.org/10.1097/MRM.0000000000000025
  14. Saki J, Khademvatan S, Soltani S, Shahbazian H. Detection of toxoplasmosis in patients with end-stage renal disease by enzyme-linked immunosorbent assay and polymerase chain reaction methods. Parasitol Res 2013;112:163-8.
  15. Yousefi E, Foroutan M, Salehi R, Khademvatan S. Detection of acute and chronic toxoplasmosis amongst multitransfused thalassemia patients in southwest of Iran. J Acute Dis 2017;6:120-5. https://doi.org/10.12980/jad.6.2017JADWEB-2017-0008
  16. Saki J, Shafieenia S, Foroutan-Rad M. Seroprevalence of toxoplasmosis in diabetic pregnant women in southwestern of Iran. J Parasit Dis 2016;40:1586-9. https://doi.org/10.1007/s12639-015-0735-4
  17. Foroutan-Rad M, Khademvatan S, Majidiani H, Aryamand S, Rahim F, Malehi AS. Seroprevalence of Toxoplasma gondii in the Iranian pregnant women: a systematic review and meta-analysis. Acta Trop 2016;158:160-9. https://doi.org/10.1016/j.actatropica.2016.03.003
  18. Abdoli A, Dalimi A, Soltanghoraee H, Ghaffarifar F. Molecular detection and genotypic characterization of Toxoplasma gondii in paraffin-embedded fetoplacental tissues of women with recurrent spontaneous abortion. Int J Fertil Steril 2017;10:327-36.
  19. Fallahi S, Rostami A, Nourollahpour Shiadeh M, Behniafar H, Paktinat S. An updated literature review on maternal-fetal and reproductive disorders of Toxoplasma gondii infection. J Gynecol Obstet Hum Reprod 2017 Dec 8 [Epub]. https://doi.org/10.1016/j.jogoh.2017.12.003.
  20. Centers for Disease Control and Prevention (CDC). Toxoplasmosis [Internet]. Atlanta, GA: Centers for Disease Control and Prevention (CDC); 2017 [cited 2018 Jan 6]. Available from: https://www.cdc.gov/dpdx/toxoplasmosis/.
  21. Sharif M, Sarvi S, Shokri A, et al. Toxoplasma gondii infection among sheep and goats in Iran: a systematic review and meta-analysis. Parasitol Res 2015;114:1-16.
  22. Majidiani H, Dalvand S, Daryani A, Galvan-Ramirez ML, Foroutan-Rad M. Is chronic toxoplasmosis a risk factor for diabetes mellitus? A systematic review and meta-analysis of case-control studies. Braz J Infect Dis 2016;20:605-9. https://doi.org/10.1016/j.bjid.2016.09.002
  23. Sutterland AL, Fond G, Kuin A, et al. Beyond the association. Toxoplasma gondii in schizophrenia, bipolar disorder, and addiction: systematic review and meta-analysis. Acta Psychiatr Scand 2015;132:161-79. https://doi.org/10.1111/acps.12423
  24. Flegr J. Neurological and neuropsychiatric consequences of chronic Toxoplasma infection. Curr Clin Microbiol Rep 2015;2:163-72. https://doi.org/10.1007/s40588-015-0024-0
  25. Havlicek J, Gasova ZG, Smith AP, Zvara K, Flegr J. Decrease of psychomotor performance in subjects with latent 'asymptomatic' toxoplasmosis. Parasitology 2001;122(Pt 5):515-20.
  26. Webster JP, Brunton CF, MacDonald DW. Effect of Toxoplasma gondii upon neophobic behaviour in wild brown rats, Rattus norvegicus. Parasitology 1994;109(Pt 1):37-43. https://doi.org/10.1017/S003118200007774X
  27. Antczak M, Dzitko K, Dlugonska H. Human toxoplasmosis-searching for novel chemotherapeutics. Biomed Pharmacother 2016;82:677-84. https://doi.org/10.1016/j.biopha.2016.05.041
  28. Hiszczynska-Sawicka E, Gatkowska JM, Grzybowski MM, Dlugonska H. Veterinary vaccines against toxoplasmosis. Parasitology 2014;141:1365-78. https://doi.org/10.1017/S0031182014000481
  29. Innes EA. Vaccination against Toxoplasma gondii: an increasing priority for collaborative research? Expert Rev Vaccines 2010;9:1117-9. https://doi.org/10.1586/erv.10.113
  30. Kur J, Holec-Gasior L, Hiszczynska-Sawicka E. Current status of toxoplasmosis vaccine development. Expert Rev Vaccines 2009;8:791-808. https://doi.org/10.1586/erv.09.27
  31. Garcia JL. Vaccination concepts against Toxoplasma gondii. Expert Rev Vaccines 2009;8:215-25. https://doi.org/10.1586/14760584.8.2.215
  32. Lim SS, Othman RY. Recent advances in Toxoplasma gondii immunotherapeutics. Korean J Parasitol 2014;52:581-93. https://doi.org/10.3347/kjp.2014.52.6.581
  33. Zhang NZ, Chen J, Wang M, Petersen E, Zhu XQ. Vaccines against Toxoplasma gondii: new developments and perspectives. Expert Rev Vaccines 2013;12:1287-99. https://doi.org/10.1586/14760584.2013.844652
  34. Ghaffarifar F. Strategies of DNA vaccines against toxoplasmosis. Rev Med Microbiol 2015;26:88-90. https://doi.org/10.1097/MRM.0000000000000037
  35. Hoseinian Khosroshahi K, Ghaffarifar F, D'Souza S, Sharifi Z, Dalimi A. Evaluation of the immune response induced by DNA vaccine cocktail expressing complete SAG1 and ROP2 genes against toxoplasmosis. Vaccine 2011;29:778-83. https://doi.org/10.1016/j.vaccine.2010.11.012
  36. Naserifar R, Ghaffarifar F, Dalimi A, Sharifi Z, Solhjoo K, Hosseinian Khosroshahi K. Evaluation of immunogenicity of cocktail DNA vaccine containing plasmids encoding complete GRA5, SAG1, and ROP2 antigens of Toxoplasma gondii in BALB/C mice. Iran J Parasitol 2015;10:590-8.
  37. Jongert E, Roberts CW, Gargano N, Forster-Waldl E, Petersen E. Vaccines against Toxoplasma gondii: challenges and opportunities. Mem Inst Oswaldo Cruz 2009;104:252-66.
  38. Buxton D. Toxoplasmosis: the first commercial vaccine. Parasitol Today 1993;9:335-7. https://doi.org/10.1016/0169-4758(93)90236-9
  39. Dlugonska H. Toxoplasma rhoptries: unique secretory organelles and source of promising vaccine proteins for immunoprevention of toxoplasmosis. J Biomed Biotechnol 2008;2008:632424.
  40. Wang S, Hassan IA, Liu X, et al. Immunological changes induced by Toxoplasma gondii glutathione-S-transferase (TgGST) delivered as a DNA vaccine. Res Vet Sci 2015;99:157-64. https://doi.org/10.1016/j.rvsc.2014.12.006
  41. Hassan IA, Wang S, Xu L, Yan R, Song X, Li X. Immunoglobulin and cytokine changes induced following immunization with a DNA vaccine encoding Toxoplasma gondii selenium-dependent glutathione reductase protein. Exp Parasitol 2014;146:1-10. https://doi.org/10.1016/j.exppara.2014.08.011
  42. Chu D, Moroda M, Piao LX, Aosai F. CTL induction by DNA vaccine with Toxoplasma gondii-HSP70 gene. Parasitol Int 2014;63:408-16. https://doi.org/10.1016/j.parint.2014.01.002
  43. Zhao G, Zhou A, Lu G, et al. Identification and characterization of Toxoplasma gondii aspartic protease 1 as a novel vaccine candidate against toxoplasmosis. Parasit Vectors 2013;6:175. https://doi.org/10.1186/1756-3305-6-175
  44. Gong P, Huang X, Yu Q, et al. The protective effect of a DNA vaccine encoding the Toxoplasma gondii cyclophilin gene in BALB/c mice. Parasite Immunol 2013;35:140-6. https://doi.org/10.1111/pim.12024
  45. Chen J, Huang SY, Zhou DH, et al. DNA immunization with eukaryotic initiation factor-2alpha of Toxoplasma gondii induces protective immunity against acute and chronic toxoplasmosis in mice. Vaccine 2013;31:6225-31. https://doi.org/10.1016/j.vaccine.2013.10.034
  46. Chen J, Huang SY, Li ZY, et al. Protective immunity induced by a DNA vaccine expressing eIF4A of Toxoplasma gondii against acute toxoplasmosis in mice. Vaccine 2013;31:1734-9. https://doi.org/10.1016/j.vaccine.2013.01.027
  47. Uboldi AD, McCoy JM, Blume M, et al. Regulation of starch stores by a Ca(2+)-dependent protein kinase is essential for viable cyst development in Toxoplasma gondii. Cell Host Microbe 2015;18:670-81. https://doi.org/10.1016/j.chom.2015.11.004
  48. Peixoto L, Chen F, Harb OS, et al. Integrative genomic approaches highlight a family of parasite-specific kinases that regulate host responses. Cell Host Microbe 2010;8:208-18. https://doi.org/10.1016/j.chom.2010.07.004
  49. Billker O, Lourido S, Sibley LD. Calcium-dependent signaling and kinases in apicomplexan parasites. Cell Host Microbe 2009;5:612-22. https://doi.org/10.1016/j.chom.2009.05.017
  50. Nagamune K, Sibley LD. Comparative genomic and phylogenetic analyses of calcium ATPases and calcium-regulated proteins in the apicomplexa. Mol Biol Evol 2006;23: 1613-27. https://doi.org/10.1093/molbev/msl026
  51. Moreno SN, Docampo R. Calcium regulation in protozoan parasites. Curr Opin Microbiol 2003;6:359-64. https://doi.org/10.1016/S1369-5274(03)00091-2
  52. Zhang NZ, Huang SY, Zhou DH, et al. Protective immunity against Toxoplasma gondii induced by DNA immunization with the gene encoding a novel vaccine candidate: calcium-dependent protein kinase 3. BMC Infect Dis 2013;13:512. https://doi.org/10.1186/1471-2334-13-512
  53. Zhang NZ, Xu Y, Wang M, et al. Vaccination with Toxoplasma gondii calcium-dependent protein kinase 6 and rhoptry protein 18 encapsulated in poly(lactide-co-glycolide) microspheres induces long-term protective immunity in mice. BMC Infect Dis 2016;16:168. https://doi.org/10.1186/s12879-016-1496-0
  54. Chen J, Li ZY, Petersen E, Liu WG, Zhu XQ. Co-administration of interleukins 7 and 15 with DNA vaccine improves protective immunity against Toxoplasma gondii. Exp Parasitol 2016;162:18-23. https://doi.org/10.1016/j.exppara.2015.12.013
  55. Zhang NZ, Huang SY, Xu Y, et al. Evaluation of immune responses in mice after DNA immunization with putative Toxoplasma gondii calcium-dependent protein kinase 5. Clin Vaccine Immunol 2014;21:924-9. https://doi.org/10.1128/CVI.00059-14
  56. Chen J, Li ZY, Huang SY, et al. Protective efficacy of Toxoplasma gondii calcium-dependent protein kinase 1 (TgCDPK1) adjuvated with recombinant IL-15 and IL-21 against experimental toxoplasmosis in mice. BMC Infect Dis 2014;14:487. https://doi.org/10.1186/1471-2334-14-487
  57. Morlon-Guyot J, Berry L, Chen CT, Gubbels MJ, Lebrun M, Daher W. The Toxoplasma gondii calcium-dependent protein kinase 7 is involved in early steps of parasite division and is crucial for parasite survival. Cell Microbiol 2014;16:95-114. https://doi.org/10.1111/cmi.12186
  58. Chen K, Wang JL, Huang SY, Yang WB, Zhu WN, Zhu XQ. Immune responses and protection after DNA vaccination against Toxoplasma gondii calcium-dependent protein kinase 2 (TgCDPK2). Parasite 2017;24:41. https://doi.org/10.1051/parasite/2017045
  59. Billker O, Dechamps S, Tewari R, Wenig G, Franke-Fayard B, Brinkmann V. Calcium and a calcium-dependent protein kinase regulate gamete formation and mosquito transmission in a malaria parasite. Cell 2004;117:503-14. https://doi.org/10.1016/S0092-8674(04)00449-0
  60. Lourido S, Shuman J, Zhang C, Shokat KM, Hui R, Sibley LD. Calcium-dependent protein kinase 1 is an essential regulator of exocytosis in Toxoplasma. Nature 2010;465:359-62. https://doi.org/10.1038/nature09022
  61. Wang JL, Huang SY, Li TT, Chen K, Ning HR, Zhu XQ. Evaluation of the basic functions of six calcium-dependent protein kinases in Toxoplasma gondii using CRISPR-Cas9 system. Parasitol Res 2016;115:697-702. https://doi.org/10.1007/s00436-015-4791-6
  62. Li L, Petrovsky N. Molecular mechanisms for enhanced DNA vaccine immunogenicity. Expert Rev Vaccines 2016;15:313-29.
  63. Saade F, Petrovsky N. Technologies for enhanced efficacy of DNA vaccines. Expert Rev Vaccines 2012;11:189-209. https://doi.org/10.1586/erv.11.188
  64. Doria-Rose NA, Haigwood NL. DNA vaccine strategies: candidates for immune modulation and immunization regimens. Methods 2003;31:207-16. https://doi.org/10.1016/S1046-2023(03)00135-X
  65. Ojo KK, Larson ET, Keyloun KR, et al. Toxoplasma gondii calcium-dependent protein kinase 1 is a target for selective kinase inhibitors. Nat Struct Mol Biol 2010;17:602-7. https://doi.org/10.1038/nsmb.1818
  66. Zhang NZ, Huang SY, Zhou DH, Xu Y, He JJ, Zhu XQ. Identification and bioinformatic analysis of a putative calciumdependent protein kinase (CDPK6) from Toxoplasma gondii. Genet Mol Res 2014;13:10669-77. https://doi.org/10.4238/2014.December.18.9
  67. McCoy JM, Whitehead L, van Dooren GG, Tonkin CJ. TgCDPK3 regulates calcium-dependent egress of Toxoplasma gondii from host cells. PLoS Pathog 2012;8:e1003066. https://doi.org/10.1371/journal.ppat.1003066
  68. Garrison E, Treeck M, Ehret E, et al. A forward genetic screen reveals that calcium-dependent protein kinase 3 regulates egress in Toxoplasma. PLoS Pathog 2012;8:e1003049. https://doi.org/10.1371/journal.ppat.1003049
  69. Sayles PC, Gibson GW, Johnson LL. B cells are essential for vaccination-induced resistance to virulent Toxoplasma gondii. Infect Immun 2000;68:1026-33. https://doi.org/10.1128/IAI.68.3.1026-1033.2000
  70. Denkers EY, Gazzinelli RT. Regulation and function of Tcell-mediated immunity during Toxoplasma gondii infection. Clin Microbiol Rev 1998;11:569-88.
  71. Suzuki Y, Orellana MA, Schreiber RD, Remington JS. Interferon-gamma: the major mediator of resistance against Toxoplasma gondii. Science 1988;240:516-8. https://doi.org/10.1126/science.3128869
  72. Dubensky TW Jr, Liu MA, Ulmer JB. Delivery systems for gene-based vaccines. Mol Med 2000;6:723-32.
  73. Bureau MF, Naimi S, Torero Ibad R, et al. Intramuscular plasmid DNA electrotransfer: biodistribution and degradation. Biochim Biophys Acta 2004;1676:138-48. https://doi.org/10.1016/j.bbaexp.2003.11.005
  74. Greenland JR, Letvin NL. Chemical adjuvants for plasmid DNA vaccines. Vaccine 2007;25:3731-41. https://doi.org/10.1016/j.vaccine.2007.01.120
  75. Montomoli E, Piccirella S, Khadang B, Mennitto E, Camerini R, De Rosa A. Current adjuvants and new perspectives in vaccine formulation. Expert Rev Vaccines 2011; 10:1053-61. https://doi.org/10.1586/erv.11.48
  76. Khosroshahi KH, Ghaffarifar F, Sharifi Z, et al. Comparing the effect of IL-12 genetic adjuvant and alum non-genetic adjuvant on the efficiency of the cocktail DNA vaccine containing plasmids encoding SAG-1 and ROP-2 of Toxoplasma gondii. Parasitol Res 2012;111:403-11. https://doi.org/10.1007/s00436-012-2852-7
  77. Xue M, He S, Zhang J, Cui Y, Yao Y, Wang H. Comparison of cholera toxin A2/B and murine interleukin-12 as adjuvants of Toxoplasma multi-antigenic SAG1-ROP2 DNA vaccine. Exp Parasitol 2008;119:352-7. https://doi.org/10.1016/j.exppara.2008.03.005
  78. Liu Q, Wang F, Wang G, et al. Toxoplasma gondii: immune response and protective efficacy induced by ROP16/GRA7 multicomponent DNA vaccine with a genetic adjuvant B7-2. Hum Vaccin Immunother 2014;10:184-91. https://doi.org/10.4161/hv.26703
  79. Wang PY, Yuan ZG, Petersen E, et al. Protective efficacy of a Toxoplasma gondii rhoptry protein 13 plasmid DNA vaccine in mice. Clin Vaccine Immunol 2012;19:1916-20. https://doi.org/10.1128/CVI.00397-12
  80. Dooms H, Abbas AK. Control of CD4+ T-cell memory by cytokines and costimulators. Immunol Rev 2006;211:23-38. https://doi.org/10.1111/j.0105-2896.2006.00387.x
  81. Melchionda F, Fry TJ, Milliron MJ, McKirdy MA, Tagaya Y, Mackall CL. Adjuvant IL-7 or IL-15 overcomes immunodominance and improves survival of the CD8+ memory cell pool. J Clin Invest 2005;115:1177-87. https://doi.org/10.1172/JCI200523134
  82. Li ZY, Chen J, Petersen E, et al. Synergy of mIL-21 and mIL-15 in enhancing DNA vaccine efficacy against acute and chronic Toxoplasma gondii infection in mice. Vaccine 2014;32:3058-65. https://doi.org/10.1016/j.vaccine.2014.03.042
  83. Boothroyd JC, Dubremetz JF. Kiss and spit: the dual roles of Toxoplasma rhoptries. Nat Rev Microbiol 2008;6:79-88. https://doi.org/10.1038/nrmicro1800
  84. Bradley PJ, Ward C, Cheng SJ, et al. Proteomic analysis of rhoptry organelles reveals many novel constituents for host-parasite interactions in Toxoplasma gondii. J Biol Chem 2005;280:34245-58. https://doi.org/10.1074/jbc.M504158200
  85. Liu Q, Li FC, Zhou CX, Zhu XQ. Research advances in interactions related to Toxoplasma gondii microneme proteins. Exp Parasitol 2017;176:89-98. https://doi.org/10.1016/j.exppara.2017.03.001
  86. Brossier F, David Sibley L. Toxoplasma gondii: microneme protein MIC2. Int J Biochem Cell Biol 2005;37:2266-72. https://doi.org/10.1016/j.biocel.2005.06.006
  87. Shirota H, Klinman DM. Recent progress concerning CpG DNA and its use as a vaccine adjuvant. Expert Rev Vaccines 2014;13:299-312. https://doi.org/10.1586/14760584.2014.863715
  88. Sinha VR, Trehan A. Biodegradable microspheres for protein delivery. J Control Release 2003;90:261-80. https://doi.org/10.1016/S0168-3659(03)00194-9
  89. Jain S, O'Hagan DT, Singh M. The long-term potential of biodegradable poly(lactide-co-glycolide) microparticles as the next-generation vaccine adjuvant. Expert Rev Vaccines 2011;10:1731-42. https://doi.org/10.1586/erv.11.126
  90. Xu Y, Zhang NZ, Wang M, et al. A long-lasting protective immunity against chronic toxoplasmosis in mice induced by recombinant rhoptry proteins encapsulated in poly (lactide-co-glycolide) microparticles. Parasitol Res 2015;114:4195-203. https://doi.org/10.1007/s00436-015-4652-3
  91. Nabi H, Rashid I, Ahmad N, et al. Induction of specific humoral immune response in mice immunized with ROP18 nanospheres from Toxoplasma gondii. Parasitol Res 2017;116:359-70. https://doi.org/10.1007/s00436-016-5298-5
  92. Chuang SC, Ko JC, Chen CP, Du JT, Yang CD. Encapsulation of chimeric protein rSAG1/2 into poly(lactide-co-glycolide) microparticles induces long-term protective immunity against Toxoplasma gondii in mice. Exp Parasitol 2013;134:430-7. https://doi.org/10.1016/j.exppara.2013.04.002
  93. Flower DR, Macdonald IK, Ramakrishnan K, Davies MN, Doytchinova IA. Computer aided selection of candidate vaccine antigens. Immunome Res 2010;6 Suppl 2:S1.
  94. Romano P, Giugno R, Pulvirenti A. Tools and collaborative environments for bioinformatics research. Brief Bioinform 2011;12:549-61. https://doi.org/10.1093/bib/bbr055
  95. Wang Y, Wang G, Cai J, Yin H. Review on the identification and role of Toxoplasma gondii antigenic epitopes. Parasitol Res 2016;115:459-68. https://doi.org/10.1007/s00436-015-4824-1
  96. Zhou J, Wang L, Lu G, et al. Epitope analysis and protection by a ROP19 DNA vaccine against Toxoplasma gondii. Parasite 2016;23:17. https://doi.org/10.1051/parasite/2016017
  97. Cao A, Liu Y, Wang J, et al. Toxoplasma gondii: vaccination with a DNA vaccine encoding T- and B-cell epitopes of SAG1, GRA2, GRA7 and ROP16 elicits protection against acute toxoplasmosis in mice. Vaccine 2015;33:6757-62. https://doi.org/10.1016/j.vaccine.2015.10.077
  98. Cong H, Gu QM, Yin HE, et al. Multi-epitope DNA vaccine linked to the A2/B subunit of cholera toxin protect mice against Toxoplasma gondii. Vaccine 2008;26:3913-21. https://doi.org/10.1016/j.vaccine.2008.04.046
  99. Cong H, Yuan Q, Zhao Q, et al. Comparative efficacy of a multi-epitope DNA vaccine via intranasal, peroral, and intramuscular delivery against lethal Toxoplasma gondii infection in mice. Parasit Vectors 2014;7:145. https://doi.org/10.1186/1756-3305-7-145
  100. Yin H, Zhao L, Wang T, Zhou H, He S, Cong H. A Toxoplasma gondii vaccine encoding multistage antigens in conjunction with ubiquitin confers protective immunity to BALB/c mice against parasite infection. Parasit Vectors 2015;8:498. https://doi.org/10.1186/s13071-015-1108-7
  101. Alexander J, Jebbari H, Bluethmann H, Satoskar A, Roberts CW. Immunological control of Toxoplasma gondii and appropriate vaccine design. Curr Top Microbiol Immunol 1996;219:183-95.

Cited by

  1. Seroepidemiological evaluation of Toxoplasma gondii immunity among the general population in southwest of Iran vol.42, pp.4, 2018, https://doi.org/10.1007/s12639-018-1047-2
  2. A systematic review and meta-analysis of the prevalence of toxoplasmosis in hemodialysis patients in Iran vol.40, pp.None, 2018, https://doi.org/10.4178/epih.e2018016
  3. Recent progress in microneme-based vaccines development against Toxoplasma gondii vol.7, pp.2, 2018, https://doi.org/10.7774/cevr.2018.7.2.93
  4. Cloning and molecular analysis of Toxoplasma gondii Surface Antigen 2 (SAG2) gene cloned from Toxoplasma gondii DNA isolated from Javanese acute toxoplasmosis vol.434, pp.None, 2018, https://doi.org/10.1088/1757-899x/434/1/012115
  5. Rhoptry antigens as Toxoplasma gondii vaccine target vol.8, pp.1, 2018, https://doi.org/10.7774/cevr.2019.8.1.4
  6. Proteins with calmodulin-like domains: structures and functional roles vol.76, pp.12, 2019, https://doi.org/10.1007/s00018-019-03062-z
  7. In-depth computational analysis of calcium-dependent protein kinase 3 of Toxoplasma gondii provides promising targets for vaccination vol.9, pp.2, 2020, https://doi.org/10.7774/cevr.2020.9.2.146
  8. Immunoinformatic Analysis of Calcium-Dependent Protein Kinase 7 (CDPK7) Showed Potential Targets for Toxoplasma gondii Vaccine vol.2021, pp.None, 2018, https://doi.org/10.1155/2021/9974509
  9. Eimeria tenella Translation Initiation Factor eIF-5A That Interacts With Calcium-Dependent Protein Kinase 4 Is Involved in Host Cell Invasion vol.10, pp.None, 2021, https://doi.org/10.3389/fcimb.2020.602049
  10. Bioinformatics analysis of calcium-dependent protein kinase 4 (CDPK4) as Toxoplasma gondii vaccine target vol.14, pp.1, 2018, https://doi.org/10.1186/s13104-021-05467-1
  11. 17β-estradiol modulates the expression of hormonal receptors on THP-1 T. gondii-infected macrophages and monocytes in an AKT and ERK-dependent manner vol.247, pp.None, 2022, https://doi.org/10.1016/j.molbiopara.2021.111433