DOI QR코드

DOI QR Code

Distinct features of dendritic cell-based immunotherapy as cancer vaccines

  • Lee, Chaelin (Department of Bioscience & Biotechnology, Sejong University) ;
  • Lee, Myungmi (Department of Bioscience & Biotechnology, Sejong University) ;
  • Rhee, Inmoo (Department of Bioscience & Biotechnology, Sejong University)
  • Received : 2017.11.25
  • Accepted : 2017.12.28
  • Published : 2018.01.31

Abstract

Dendritic cells (DCs) are the most professional antigen presenting cells that play important roles in connection between innate and adaptive immune responses. Numerous studies revealed that the functions of DCs are related with the capture and processing of antigen as well as the migration to lymphoid tissues for the presenting antigens to T cells. These unique features of DCs allow them to be considered as therapeutic vaccines that can induce immune responses and anti-tumor activity. Here, we discuss and understand the immunological basis of DCs and presume the possibilities of DC-based vaccines for the promising cancer therapy.

Keywords

Acknowledgement

Supported by : National Research Foundation of KOREA (NRF)

References

  1. Steinman RM, Cohn ZA. Identification of a novel cell type in peripheral lymphoid organs of mice. I. Morphology, quantitation, tissue distribution. J Exp Med 1973;137:1142-62. https://doi.org/10.1084/jem.137.5.1142
  2. Steinman RM, Nussenzweig MC. Dendritic cells: features and functions. Immunol Rev 1980;53:127-47. https://doi.org/10.1111/j.1600-065X.1980.tb01042.x
  3. Banchereau J, Steinman RM. Dendritic cells and the control of immunity. Nature 1998;392:245-52. https://doi.org/10.1038/32588
  4. Banchereau J, Briere F, Caux C, et al. Immunobiology of dendritic cells. Annu Rev Immunol 2000;18:767-811. https://doi.org/10.1146/annurev.immunol.18.1.767
  5. Mellman I, Steinman RM. Dendritic cells: specialized and regulated antigen processing machines. Cell 2001;106:255-8. https://doi.org/10.1016/S0092-8674(01)00449-4
  6. Steinman RM. The dendritic cell system and its role in immunogenicity. Annu Rev Immunol 1991;9:271-96. https://doi.org/10.1146/annurev.iy.09.040191.001415
  7. Munz C, Steinman RM, Fujii S. Dendritic cell maturation by innate lymphocytes: coordinated stimulation of innate and adaptive immunity. J Exp Med 2005;202:203-7. https://doi.org/10.1084/jem.20050810
  8. Steinman RM. Decisions about dendritic cells: past, present, and future. Annu Rev Immunol 2012;30:1-22. https://doi.org/10.1146/annurev-immunol-100311-102839
  9. Steinman RM, Pack M, Inaba K. Dendritic cell development and maturation. Adv Exp Med Biol 1997;417:1-6.
  10. Steinman RM, Idoyaga J. Features of the dendritic cell lineage. Immunol Rev 2010;234:5-17. https://doi.org/10.1111/j.0105-2896.2009.00888.x
  11. Steinman RM, Inaba K, Turley S, Pierre P, Mellman I. Antigen capture, processing, and presentation by dendritic cells: recent cell biological studies. Hum Immunol 1999;60:562-7. https://doi.org/10.1016/S0198-8859(99)00030-0
  12. Cella M, Engering A, Pinet V, Pieters J, Lanzavecchia A. Inflammatory stimuli induce accumulation of MHC class II complexes on dendritic cells. Nature 1997;388:782-7. https://doi.org/10.1038/42030
  13. Guermonprez P, Valladeau J, Zitvogel L, Thery C, Amigorena S. Antigen presentation and T cell stimulation by dendritic cells. Annu Rev Immunol 2002;20:621-67. https://doi.org/10.1146/annurev.immunol.20.100301.064828
  14. Alvarez D, Vollmann EH, von Andrian UH. Mechanisms and consequences of dendritic cell migration. Immunity 2008;29:325-42. https://doi.org/10.1016/j.immuni.2008.08.006
  15. Thery C, Amigorena S. The cell biology of antigen presentation in dendritic cells. Curr Opin Immunol 2001;13:45-51. https://doi.org/10.1016/S0952-7915(00)00180-1
  16. Bonasio R, von Andrian UH. Generation, migration and function of circulating dendritic cells. Curr Opin Immunol 2006;18:503-11. https://doi.org/10.1016/j.coi.2006.05.011
  17. MartIn-Fontecha A, Sebastiani S, Hopken UE, et al. Regulation of dendritic cell migration to the draining lymph node: impact on T lymphocyte traffic and priming. J Exp Med 2003;198:615-21. https://doi.org/10.1084/jem.20030448
  18. Dieu MC, Vanbervliet B, Vicari A, et al. Selective recruitment of immature and mature dendritic cells by distinct chemokines expressed in different anatomic sites. J Exp Med 1998;188:373-86. https://doi.org/10.1084/jem.188.2.373
  19. Randolph GJ, Sanchez-Schmitz G, Angeli V. Factors and signals that govern the migration of dendritic cells via lymphatics: recent advances. Springer Semin Immunopathol 2005;26:273-87. https://doi.org/10.1007/s00281-004-0168-0
  20. Cavanagh LL, Bonasio R, Mazo IB, et al. Activation of bone marrow-resident memory T cells by circulating, antigenbearing dendritic cells. Nat Immunol 2005;6:1029-37. https://doi.org/10.1038/ni1249
  21. Shortman K, Liu YJ. Mouse and human dendritic cell subtypes. Nat Rev Immunol 2002;2:151-61. https://doi.org/10.1038/nri746
  22. Shortman K, Naik SH. Steady-state and inflammatory dendritic-cell development. Nat Rev Immunol 2007;7:19-30. https://doi.org/10.1038/nri1996
  23. MacDonald KP, Munster DJ, Clark GJ, Dzionek A, Schmitz J, Hart DN. Characterization of human blood dendritic cell subsets. Blood 2002;100:4512-20. https://doi.org/10.1182/blood-2001-11-0097
  24. Dzionek A, Fuchs A, Schmidt P, et al. BDCA-2, BDCA-3, and BDCA-4: three markers for distinct subsets of dendritic cells in human peripheral blood. J Immunol 2000;165: 6037-46. https://doi.org/10.4049/jimmunol.165.11.6037
  25. Shortman K, Heath WR. The CD8+ dendritic cell subset. Immunol Rev 2010;234:18-31. https://doi.org/10.1111/j.0105-2896.2009.00870.x
  26. Villadangos JA, Schnorrer P. Intrinsic and cooperative antigen-presenting functions of dendritic-cell subsets in vivo. Nat Rev Immunol 2007;7:543-55. https://doi.org/10.1038/nri2103
  27. den Haan JM, Lehar SM, Bevan MJ. CD8(+) but not CD8(-) dendritic cells cross-prime cytotoxic T cells in vivo. J Exp Med 2000;192:1685-96. https://doi.org/10.1084/jem.192.12.1685
  28. Hochrein H, Shortman K, Vremec D, Scott B, Hertzog P, O'Keeffe M. Differential production of IL-12, IFN-alpha, and IFN-gamma by mouse dendritic cell subsets. J Immunol 2001;166:5448-55. https://doi.org/10.4049/jimmunol.166.9.5448
  29. Vremec D, Pooley J, Hochrein H, Wu L, Shortman K. CD4 and CD8 expression by dendritic cell subtypes in mouse thymus and spleen. J Immunol 2000;164:2978-86. https://doi.org/10.4049/jimmunol.164.6.2978
  30. del Rio ML, Bernhardt G, Rodriguez-Barbosa JI, Forster R. Development and functional specialization of CD103+ dendritic cells. Immunol Rev 2010;234:268-81. https://doi.org/10.1111/j.0105-2896.2009.00874.x
  31. Bedoui S, Whitney PG, Waithman J, et al. Cross-presentation of viral and self antigens by skin-derived CD103+ dendritic cells. Nat Immunol 2009;10:488-95. https://doi.org/10.1038/ni.1724
  32. Liu YJ. IPC: professional type 1 interferon-producing cells and plasmacytoid dendritic cell precursors. Annu Rev Immunol 2005;23:275-306. https://doi.org/10.1146/annurev.immunol.23.021704.115633
  33. Gilliet M, Cao W, Liu YJ. Plasmacytoid dendritic cells: sensing nucleic acids in viral infection and autoimmune diseases. Nat Rev Immunol 2008;8:594-606. https://doi.org/10.1038/nri2358
  34. Villadangos JA, Young L. Antigen-presentation properties of plasmacytoid dendritic cells. Immunity 2008;29:352-61. https://doi.org/10.1016/j.immuni.2008.09.002
  35. Swiecki M, Colonna M. Unraveling the functions of plasmacytoid dendritic cells during viral infections, autoimmunity, and tolerance. Immunol Rev 2010;234:142-62. https://doi.org/10.1111/j.0105-2896.2009.00881.x
  36. O'Keeffe M, Hochrein H, Vremec D, et al. Mouse plasmacytoid cells: long-lived cells, heterogeneous in surface phenotype and function, that differentiate into CD8(+) dendritic cells only after microbial stimulus. J Exp Med 2002; 196:1307-19. https://doi.org/10.1084/jem.20021031
  37. Liu K, Waskow C, Liu X, Yao K, Hoh J, Nussenzweig M. Origin of dendritic cells in peripheral lymphoid organs of mice. Nat Immunol 2007;8:578-83. https://doi.org/10.1038/ni1462
  38. Naik SH, Sathe P, Park HY, et al. Development of plasmacytoid and conventional dendritic cell subtypes from single precursor cells derived in vitro and in vivo. Nat Immunol 2007;8:1217-26. https://doi.org/10.1038/ni1522
  39. Blasius AL, Giurisato E, Cella M, Schreiber RD, Shaw AS, Colonna M. Bone marrow stromal cell antigen 2 is a specific marker of type I IFN-producing cells in the naive mouse, but a promiscuous cell surface antigen following IFN stimulation. J Immunol 2006;177:3260-5. https://doi.org/10.4049/jimmunol.177.5.3260
  40. Blasius A, Vermi W, Krug A, Facchetti F, Cella M, Colonna M. A cell-surface molecule selectively expressed on murine natural interferon-producing cells that blocks secretion of interferon-alpha. Blood 2004;103:4201-6. https://doi.org/10.1182/blood-2003-09-3108
  41. Honda K, Ohba Y, Yanai H, et al. Spatiotemporal regulation of MyD88-IRF-7 signalling for robust type-I interferon induction. Nature 2005;434:1035-40. https://doi.org/10.1038/nature03547
  42. Sasai M, Linehan MM, Iwasaki A. Bifurcation of Toll-like receptor 9 signaling by adaptor protein 3. Science 2010; 329:1530-4. https://doi.org/10.1126/science.1187029
  43. Leon B, Lopez-Bravo M, Ardavin C. Monocyte-derived dendritic cells formed at the infection site control the induction of protective T helper 1 responses against Leishmania. Immunity 2007;26:519-31. https://doi.org/10.1016/j.immuni.2007.01.017
  44. Rotta G, Edwards EW, Sangaletti S, et al. Lipopolysaccharide or whole bacteria block the conversion of inflammatory monocytes into dendritic cells in vivo. J Exp Med 2003; 198:1253-63. https://doi.org/10.1084/jem.20030335
  45. Ginhoux F, Tacke F, Angeli V, et al. Langerhans cells arise from monocytes in vivo. Nat Immunol 2006;7:265-73.
  46. Trombetta ES, Mellman I. Cell biology of antigen processing in vitro and in vivo. Annu Rev Immunol 2005;23:975-1028. https://doi.org/10.1146/annurev.immunol.22.012703.104538
  47. Watts C. Capture and processing of exogenous antigens for presentation on MHC molecules. Annu Rev Immunol 1997;15:821-50. https://doi.org/10.1146/annurev.immunol.15.1.821
  48. Watts C, Amigorena S. Antigen traffic pathways in dendritic cells. Traffic 2000;1:312-7. https://doi.org/10.1034/j.1600-0854.2000.010404.x
  49. Sallusto F, Cella M, Danieli C, Lanzavecchia A. Dendritic cells use macropinocytosis and the mannose receptor to concentrate macromolecules in the major histocompatibility complex class II compartment: downregulation by cytokines and bacterial products. J Exp Med 1995;182:389-400. https://doi.org/10.1084/jem.182.2.389
  50. Garrett WS, Chen LM, Kroschewski R, et al. Developmental control of endocytosis in dendritic cells by Cdc42. Cell 2000;102:325-34. https://doi.org/10.1016/S0092-8674(00)00038-6
  51. Palm NW, Medzhitov R. Pattern recognition receptors and control of adaptive immunity. Immunol Rev 2009;227:221-33. https://doi.org/10.1111/j.1600-065X.2008.00731.x
  52. Amigorena S, Bonnerot C. Fc receptor signaling and trafficking: a connection for antigen processing. Immunol Rev 1999;172:279-84. https://doi.org/10.1111/j.1600-065X.1999.tb01372.x
  53. East L, Isacke CM. The mannose receptor family. Biochim Biophys Acta 2002;1572:364-86. https://doi.org/10.1016/S0304-4165(02)00319-7
  54. Weis WI, Taylor ME, Drickamer K. The C-type lectin superfamily in the immune system. Immunol Rev 1998;163:19-34. https://doi.org/10.1111/j.1600-065X.1998.tb01185.x
  55. Geijtenbeek TB, van Vliet SJ, Engering A, t Hart BA, van Kooyk Y. Self- and nonself-recognition by C-type lectins on dendritic cells. Annu Rev Immunol 2004;22:33-54. https://doi.org/10.1146/annurev.immunol.22.012703.104558
  56. Mahnke K, Guo M, Lee S, et al. The dendritic cell receptor for endocytosis, DEC-205, can recycle and enhance antigen presentation via major histocompatibility complex class II-positive lysosomal compartments. J Cell Biol 2000;151:673-84. https://doi.org/10.1083/jcb.151.3.673
  57. Castellino F, Germain RN. Extensive trafficking of MHC class II-invariant chain complexes in the endocytic pathway and appearance of peptide-loaded class II in multiple compartments. Immunity 1995;2:73-88. https://doi.org/10.1016/1074-7613(95)90080-2
  58. Turley SJ, Inaba K, Garrett WS, et al. Transport of peptide-MHC class II complexes in developing dendritic cells. Science 2000;288:522-7. https://doi.org/10.1126/science.288.5465.522
  59. Pamer E, Cresswell P. Mechanisms of MHC class I--restricted antigen processing. Annu Rev Immunol 1998;16:323-58. https://doi.org/10.1146/annurev.immunol.16.1.323
  60. Heath WR, Carbone FR. Cross-presentation, dendritic cells, tolerance and immunity. Annu Rev Immunol 2001;19:47-64. https://doi.org/10.1146/annurev.immunol.19.1.47
  61. Heath WR, Belz GT, Behrens GM, et al. Cross-presentation, dendritic cell subsets, and the generation of immunity to cellular antigens. Immunol Rev 2004;199:9-26. https://doi.org/10.1111/j.0105-2896.2004.00142.x
  62. Monu N, Trombetta ES. Cross-talk between the endocytic pathway and the endoplasmic reticulum in cross-presentation by MHC class I molecules. Curr Opin Immunol 2007; 19:66-72. https://doi.org/10.1016/j.coi.2006.11.017
  63. Joffre OP, Segura E, Savina A, Amigorena S. Cross-presentation by dendritic cells. Nat Rev Immunol 2012;12:557-69. https://doi.org/10.1038/nri3254
  64. Inaba K, Turley S, Iyoda T, et al. The formation of immunogenic major histocompatibility complex class II-peptide ligands in lysosomal compartments of dendritic cells is regulated by inflammatory stimuli. J Exp Med 2000;191:927-36. https://doi.org/10.1084/jem.191.6.927
  65. Lanzavecchia A, Sallusto F. Dynamics of T lymphocyte responses: intermediates, effectors, and memory cells. Science 2000;290:92-7. https://doi.org/10.1126/science.290.5489.92
  66. Bergtold A, Desai DD, Gavhane A, Clynes R. Cell surface recycling of internalized antigen permits dendritic cell priming of B cells. Immunity 2005;23:503-14. https://doi.org/10.1016/j.immuni.2005.09.013
  67. Kitamura H, Iwakabe K, Yahata T, et al. The natural killer T (NKT) cell ligand alpha-galactosylceramide demonstrates its immunopotentiating effect by inducing interleukin (IL)-12 production by dendritic cells and IL-12 receptor expression on NKT cells. J Exp Med 1999;189:1121-8. https://doi.org/10.1084/jem.189.7.1121
  68. Sakaguchi S, Yamaguchi T, Nomura T, Ono M. Regulatory T cells and immune tolerance. Cell 2008;133:775-87. https://doi.org/10.1016/j.cell.2008.05.009
  69. Wing K, Sakaguchi S. Regulatory T cells exert checks and balances on self tolerance and autoimmunity. Nat Immunol 2010;11:7-13.
  70. Brocker T. The role of dendritic cells in T cell selection and survival. J Leukoc Biol 1999;66:331-5. https://doi.org/10.1002/jlb.66.2.331
  71. Thompson AG, Thomas R. Induction of immune tolerance by dendritic cells: implications for preventative and therapeutic immunotherapy of autoimmune disease. Immunol Cell Biol 2002;80:509-19. https://doi.org/10.1046/j.1440-1711.2002.01114.x
  72. Chen M, Wang YH, Wang Y, et al. Dendritic cell apoptosis in the maintenance of immune tolerance. Science 2006; 311:1160-4. https://doi.org/10.1126/science.1122545
  73. Palucka K, Banchereau J. Dendritic-cell-based therapeutic cancer vaccines. Immunity 2013;39:38-48. https://doi.org/10.1016/j.immuni.2013.07.004
  74. Mullard A. New cancer vaccines show clinical promise. Nat Rev Drug Discov 2017;16:519.
  75. Palucka K, Banchereau J. Human dendritic cell subsets in vaccination. Curr Opin Immunol 2013;25:396-402. https://doi.org/10.1016/j.coi.2013.05.001
  76. Baek S, Lee SJ, Kim MJ, Lee H. Dendritic cell (DC) vaccine in mouse lung cancer minimal residual model: comparison of monocyte-derived DC vs. hematopoietic stem cell derived-DC. Immune Netw 2012;12:269-76. https://doi.org/10.4110/in.2012.12.6.269
  77. Palucka K, Banchereau J. Cancer immunotherapy via dendritic cells. Nat Rev Cancer 2012;12:265-77. https://doi.org/10.1038/nrc3258
  78. Carreno BM, Magrini V, Becker-Hapak M, et al. Cancer immunotherapy: a dendritic cell vaccine increases the breadth and diversity of melanoma neoantigen-specific T cells. Science 2015;348:803-8. https://doi.org/10.1126/science.aaa3828
  79. Palucka K, Ueno H, Fay J, Banchereau J. Harnessing dendritic cells to generate cancer vaccines. Ann N Y Acad Sci 2009;1174:88-98. https://doi.org/10.1111/j.1749-6632.2009.05000.x
  80. Tacken PJ, Torensma R, Figdor CG. Targeting antigens to dendritic cells in vivo. Immunobiology 2006;211:599-608. https://doi.org/10.1016/j.imbio.2006.05.021
  81. Thomann JS, Heurtault B, Weidner S, et al. Antitumor activity of liposomal ErbB2/HER2 epitope peptide-based vaccine constructs incorporating TLR agonists and mannose receptor targeting. Biomaterials 2011;32:4574-83. https://doi.org/10.1016/j.biomaterials.2011.03.015
  82. Gregory AE, Titball R, Williamson D. Vaccine delivery using nanoparticles. Front Cell Infect Microbiol 2013;3:13.
  83. Chinnasamy N, Treisman JS, Oaks MK, Hanson JP, Chinnasamy D. Ex vivo generation of genetically modified dendritic cells for immunotherapy: implications of lymphocyte contamination. Gene Ther 2005;12:259-71. https://doi.org/10.1038/sj.gt.3302407
  84. Banchereau J, Palucka AK, Dhodapkar M, et al. Immune and clinical responses in patients with metastatic melanoma to CD34(+) progenitor-derived dendritic cell vaccine. Cancer Res 2001;61:6451-8.
  85. Gabrilovich DI, Ostrand-Rosenberg S, Bronte V. Coordinated regulation of myeloid cells by tumours. Nat Rev Immunol 2012;12:253-68. https://doi.org/10.1038/nri3175
  86. De Monte L, Reni M, Tassi E, et al. Intratumor T helper type 2 cell infiltrate correlates with cancer-associated fibroblast thymic stromal lymphopoietin production and reduced survival in pancreatic cancer. J Exp Med 2011;208:469-78. https://doi.org/10.1084/jem.20101876
  87. Palucka K, Banchereau J, Mellman I. Designing vaccines based on biology of human dendritic cell subsets. Immunity 2010;33:464-78. https://doi.org/10.1016/j.immuni.2010.10.007
  88. Bonaccorsi I, Pezzino G, Morandi B, Ferlazzo G. Novel perspectives on dendritic cell-based immunotherapy of cancer. Immunol Lett 2013;155:6-10. https://doi.org/10.1016/j.imlet.2013.09.021
  89. Cavallo F, Offringa R, van der Burg SH, Forni G, Melief CJ. Vaccination for treatment and prevention of cancer in animal models. Adv Immunol 2006;90:175-213.

Cited by

  1. The Protein Corona as a Confounding Variable of Nanoparticle-Mediated Targeted Vaccine Delivery vol.9, pp.None, 2018, https://doi.org/10.3389/fimmu.2018.01760
  2. Artificial antigen-presenting cells are superior to dendritic cells at inducing antigen-specific cytotoxic T lymphocytes vol.334, pp.None, 2018, https://doi.org/10.1016/j.cellimm.2018.10.002
  3. Nanoparticles: Properties and Applications in Cancer Immunotherapy vol.25, pp.17, 2018, https://doi.org/10.2174/1381612825666190708214240
  4. The immunogenic maturation of goat monocyte-derived dendritic cells and upregulation of toll-like receptors by five antigens of Haemonchus contortus in-vitro vol.136, pp.None, 2018, https://doi.org/10.1016/j.rvsc.2021.03.007