과제정보
연구 과제 주관 기관 : Kumoh National Institute of Technology
참고문헌
- S. L. Leem, H, S. Jeong, S. Y. Kim, "Remote Drawing Technology Based on Motion Trajectories Analysis", Journal of KIIECT(domestic journal), Vol. 9, No. 2, pp.229-236, 2016.
- U.V. Marti, H. Bunke, "Using a statistical language model to improve the performance of an HMM-based cursive handwriting recognition system", IJPRAI, Vol.15, No.1, pp.65-90, 2001.
- R. Kala, H. Vazirani, A. Shukla, R. Tiwari, "Offline handwriting recognition using genetic algorithm", IJCSI, Vol.7, No.2, pp.16-25, 2010.
- B. Chacko, V. Krishnan, G. Raju, P. Anto, "Handwritten character recognition using wavelet energy and extreme learning machine", Int. J. Mach. Learn. Cyber, Vol.3, No.2, pp.149-161, 2012. https://doi.org/10.1007/s13042-011-0049-5
- A. Graves, M. Liwicki, S. Fernandez, "A novel connectionist system for unconstrained handwriting recognition", IEEE Transactions on Pattern Analysis and Machine Intelligence, Vol.31, No.5, 2009.
- M.K. Brown, W. Turin, J. Hu, "HMM based online handwriting recognition", TPAMI, Vol.18, No.10, pp.1039-1045, 1996. https://doi.org/10.1109/34.541414
- X. Li, D. Y., Yeung, "On-line handwritten alphanumeric character recognition using dominant points in strokes", Pattern recognition on 1997, Vol.30, No.1, pp.31-44, 1997.
- N. Arica, F. T. Yarman, "An overview of character recognition focused on off-line handwriting", IEEE Transactions on Systems Man and Cybernetics, Vol.31, No.2, pp.216-233, 2001. https://doi.org/10.1109/5326.941845
- R. Plamondon, S. N. Srihari, "Online and off-line handwriting recognition: a comprehensive survey, IEEE Transactions on Pattern Analysis and Machine Intelligence, Vol.22, No.1, pp.63-84, 2000. https://doi.org/10.1109/34.824821
- I.J. Kim, X. Xie, "Handwritten Hangul recognition using deep convolutional neural networks", IJDAR, Vol.18, No.1, pp.1-13, 2015. https://doi.org/10.1007/s10032-014-0229-4
- I.J. Kim, C. Choi, S.H. Lee, "Improving discrimination ability of convolutional neural networks by hybrid learning", IJDAR, Vol.19, No.1, pp.1-9, 2016. https://doi.org/10.1007/s10032-015-0256-9
- Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner, "Gradient-based learning applied to document recognition" Proc. of the IEEE, Vol. 86, No. 11, pp.2278-2324, 1998. https://doi.org/10.1109/5.726791
- N. Srivastava, G. E. Hinton, A. Krizhevsky, "Dropout: a simple way to prevent neural networks from overfitting", JMLR. 2014.
- V. Nair and G. Hinton "Rectified linear units improve restricted Boltzmann machines", Proc. of International Conference on Machine Learning, pp. 807-814, 2010.