DOI QR코드

DOI QR Code

Effects of Temperature and Acetonitrile on Microwave-Assisted Weak Acid Protein Hydrolysis

  • Received : 2018.02.21
  • Accepted : 2018.03.12
  • Published : 2018.06.30

Abstract

The effects of temperature and acetonitrile (ACN) concentration on microwave-assisted weak-acid hydrolysis of proteins were investigated. Myoglobin was hydrolyzed for 1 h using 2% formic acid and a microwave with different concentrations of ACN (0, 5, and 10%) at various temperatures (50, 60, 70, 80, 90, and $100^{\circ}C$). The numbers of peptides identified with each concentration of ACN were the same for each temperature. The greatest number of peptides (18 total) was obtained with hydrolysis at $100^{\circ}C$, and 6 of these were a result of additional removal of aspartic acid at the C-terminus. Hydrolysis at $80^{\circ}C$ resulted in 13 peptides, of which only 1 was generated by the additional removal of aspartic acid, and 12 were observed with hydrolysis at $100^{\circ}C$. Our results demonstrate that microwave-assisted weak-acid hydrolysis of proteins can be performed successfully at $80^{\circ}C$, which could be beneficial for limiting side reactions and generating larger peptide sequences.

Keywords

References

  1. Seo, M.; Kim, J.; Park, S.; Lee, J. H.; Kim, T.; Lee, J.; Kim, J. Mass spectrom. Lett. 2012, 3, 47. https://doi.org/10.5478/MSL.2012.3.2.47
  2. Seo, M.; Kim, J.; Park, S.; Lee, J. H.; Kim, T.; Lee, J.; Kim, J. Bull. Korean Chem. Soc. 2013, 34, 27. https://doi.org/10.5012/bkcs.2013.34.1.27
  3. Cannon, J.; Lohnes, K.; Wynne, C.; Wang, Y.; Edwards, N.; Fenselau, C. J. Proteome Res. 2010, 9, 3886. https://doi.org/10.1021/pr1000994
  4. Remily-Wood, E.; Dirscherl, H.; Koomen, J. M. J. Am. Soc. Mass Spectrom. 2009, 20, 2106. https://doi.org/10.1016/j.jasms.2009.07.007
  5. Tsiatsiani, L.; Heck, A. J. R. FEBS J. 2015, 282, 2612. https://doi.org/10.1111/febs.13287
  6. Swatkoski, S.; Gutierrez, P.; Ginter, J.; Petrov, A.; Dinman, J. D.; Edwards, N.; Fenselau, C. J. Proteome Res. 2007, 6, 4525. https://doi.org/10.1021/pr0704682
  7. Yang, H. -J.; Hong, J.; Lee, S.; Shin, S.; Kim, J.; Kim, J. Rapid Commun. Mass Spectrom. 2010, 24, 901. https://doi.org/10.1002/rcm.4467
  8. Chen, W. Y.; Chen, Y. C. Anal. Chem. 2007, 79, 2394. https://doi.org/10.1021/ac0614893
  9. Russell, W. K.; Park, Z. Y.; Russell, D. H. Anal. Chem. 2001, 73, 2682. https://doi.org/10.1021/ac001332p
  10. Park, S.; Kim, T.; Lee, J.; Seo, M.; Kim, J. Rapid Commun. Mass Spectrom. 2013, 27, 842. https://doi.org/10.1002/rcm.6508
  11. Wu, C.; Tran, J. C.; Zamdborg, L.; Durbin, K. R.; Li, M. X.; Ahlf, D. R.; Early, B. P.; Thomas, P. M.; Sweedler, J. V.; Kelleher, N. L. Nat. Methods 2012, 9, 822. https://doi.org/10.1038/nmeth.2074
  12. Koomen, J. M.; Li, D.; Xiao, L. -C.; Liu, T. C.; Coombes, K. R.; Abbruzzese, J.; Kobayashi, R. J. Proteome Res. 2005, 4, 972. https://doi.org/10.1021/pr050046x