References
- S. BADILLO-RIOS and V. MOJICA, Mathematical and Computational Analysis of Chomp, mimeo.
- A. BROUWER, G. HORVARATH, I. MOLINAR-SAKA, and C. SZABO, On Three-Rowed Chomp, Integers, 5, G07 (2005), 1-14.
- D. GALE, A Curious Nim-Type Game, American Mathematical Monthly, 81 (1974), 876-879. https://doi.org/10.1080/00029890.1974.11993683
- M. GARDNER, Sim, Chomp and Race Track: new games for the intellect (and not for Lady Luck), Mathematical Games, 228(1) (Jan. 1973), 108-115.
- M. GARDNER, A new miscellany of problems, and encores for Race Track, Sim, Chomp and elevators, Mathematical Games, 228(5) (May 1973), 102-107.
- E. FRIEDMAN and A. LANDSBERG, Nonlinear dynamics in combinatorial games: Renormalizing Chomp, CHAOS 17, 023117 (2007). https://doi.org/10.1063/1.2725717
- F. SCHUH, Spel van delers, Nieuw Tijdschrift voor Wiskunde, 39 (1952), 299-304.
- X. SUN, Improvements on Chomp, Integers, 2, G01 (2002), 8.
- D. ZEILBERGER, Three-Rowed CHOMP, Advances in Applied Mathematics, 26 (2001), 168-179. https://doi.org/10.1006/aama.2000.0714
- U. SCHWALBE and P. WALKER, Zermelo and the Early History of Game Theory, Games and Economic Behavior, 34 (2001), 123-137. https://doi.org/10.1006/game.2000.0794
- E. ZERMELO, Uber eine Anwendung der Mengenlehre auf die Theorie des Schachspiels, Proceedings of the Fifth International Congress of Mathematicians, Cambridge, 1912, Cambridge University Press, 1913, 501-504.
- http://www.math.ucla.edu/-tom/Games/chomp.html.