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Abstract 
 

Lenstra-Lenstra-Lovász (LLL) is an effective receiving algorithm for 
Multiple-Input-Multiple-Output (MIMO) systems, which is believed can achieve full diversity 
in MIMO detection of fading channels. However, the LLL algorithm features polynomial 
complexity and shows poor performance in terms of convergence. The reduction of 
algorithmic complexity and the acceleration of convergence are key problems in optimizing 
the LLL algorithm. In this paper, a variant of the LLL algorithm, the Hybrid-Fix-and-Round 
LLL algorithm, which combines both fix and round measurements in the size reduction 
procedure, is proposed. By utilizing fix operation, the algorithmic procedure is altered and the 
size reduction procedure is skipped by the hybrid algorithm with significantly higher 
probability. As a consequence, the simulation results reveal that the 
Hybrid-Fix-and-Round-LLL algorithm carries a faster rate of convergence compared to the 
original LLL algorithm, and its algorithmic complexity is at most one order lower than 
original LLL algorithm in real field. Comparing to other families of LLL algorithm, 
Hybrid-Fix-and-Round-LLL algorithm can make a better compromise in performance and 
algorithmic complexity. 
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1. Introduction 

Lattice reduction (LR) [1]-[2] is a mainstream decoding technique. Its near-optimum 
performance comes at significantly lower complexity than ML detection. Due to this 
characteristic, LR decoding possesses significant advantages in MIMO communication [3]. A 
large part of the decoding problem in lattice reduction involves solving the closet vector 
problem (CVP) of a lattice [4]. In 1982, A. K. Lenstra, H. Lenstra, Jr., J., and L. Lovász first 
introduced the Lenstra-Lenstra-Lovász (LLL) algorithm [5] which was considered the most 
practical algorithm in lattice reduction. At the same time, the complexity of LLL algorithm is 
growing of polynomial. By means of the proximity factors method, a performance gap 
between LLL and ML decoding has been identified [6]-[7].  

It is well known that the bound of operation complexity in LLL is ( )4 logO n n [8]. With 
larger systems, reducing the whole complexity of LLL algorithm is still a challenge [9]. 
Effective LLL algorithm (E-LLL) [10] loosely imposes an ascending order on the diagonal 
elements of a channel matrix. E-LLL has a demonstrable complexity bound ( )3 logO n n that is 
one order lower than the LLL algorithm. Another new lattice basis reduction, called diagonal 
reduction [11]. It only imposes one single constraint on the diagonal elements, the execution 
times of the column swap procedure are reduced. The Complex LLL algorithm (CLLL) [12] 
expands the definition of reduced basis to include more complex values. According to 
theoretical analysis, CLLL requires less arithmetic operations than LLL [13]. 

Due to the implementation of LLL algorithm suffers from variable run-time and complexity, 
modifications of the algorithmic architecture have been proposed. A fixed complexity LLL 
(fc-LLL) algorithm [14] introduces a deterministic structure for an easy implementation. In 
[15], the same thought of fixed complexity structure is expanded to LLL-Deep algorithm. A 
novel possible-swap-LLL (PSLLL) [16] algorithm tries to change the flows of the algorithm 
procedure. In recent years, the efficient greedy LLL algorithm [17], proposes a new relaxed 
Lovász condition to search the candidate set of LLL iterations. According to [17], a more 
computationally efficeient fixed complexity LLL (CE-fcLLL) algorithm is developed. In this 
paper, it introduce a power factor (PF) to measure the  relation of reduced basis and tranmit 
power of lattice-reduction-aided precoding. And based on this factor, it design a new LLL loop.  
In paper [19] , it propose two greedy selection-based fcLLL algorithms. These algorithms can 
reduce more computaiton time in normal or large MIMO systems. Other details of 
development of LLL algorithm and MIMO detection techniques can be referred to in [20]-[22] 

In this paper, a Hybrid-Fix-and-Round LLL (Hybrid-F&R-LLL) algorithm is introduced. It 
can significantly reduce the complexity of LLL algorithm and maintain a better compromise 
between performance and complexity. In the original LLL algorithm, a round measurement 
that rounds each element to the nearest integer is applied to parameter µ . Round operation 
guarantees the accuracy of size reduction, however the duration of convergence will increase.  

In the novel Hybrid-F&R-LLL algorithm, a strategy for combining fix and round 
measurement is introduced, and the new inserted fix measurement rounds the parameter 
µ towards zero. This measurement will increase the probability of the parameter µ obtaining 
a value of 0, a condition which when met means the size reduction procedure will be skipped. 
For example, for a large part of the duration, parameter ( )0,1µ∈ , so it will get ( ) 0fix µ = and 
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size reduction procedure is skipped. Since the size reduction procedure has a close connection 
to a basis of LLL reduced. In reality, the Hybrid-F&R-LLL algorithm aims at loosening the 
definition of a basis of LLL reduced. The value of threshold that basis conform to is extended, 

from 1
2

(in the original LLL) to 1(in the Hybrid-F&R-LLL).  

Due to the size reduction condition is modified in Hybrid-F&R-LLL algorithm, so the 
whole procedure and performance of algorithm are also changed. In this paper, LLL potential 
is introduced to measure the change of LLL power. In each iteration of algorithm, the change 
of LLL potential is computed. The algorithm has fast convergence characteristic will reduced 
the LLL potential at most. When the algorithm stopped, the LLL potential will achieve on a 
lower stage and may not be reduced anymore. According to analyses of LLL potential, it is 
known that skipping the size reduction procedure is sometimes beneficial for achieving the 
largest reduction in LLL potential. This will accelerate the speed of algorithmic convergence. 
In reality, Hybrid-F&R-LLL algorithm simplify the size reduction. The basis vector can 
directly process the column swap procedure. Hybrid-F&R-LLL can reduce by at least one 
order the total costs of arithmetic operation to ( )3 logO n Bλ .The complexity of 

Hybrid-F&R-LLL algorithm is not fixed. Its complexity varies between ( )33 logO n B to 

( )37 logO n B , the complexity of E-LLL. However, the Hybrid-F&R-LLL algorithm usually 
causes a loss in performance with respect to BER. With the help of the proximity factors 
method, an upper performance bound of the Hybrid-F&R-LLL algorithm has been 

derived:
1

&
4

3 4

n

Hybrid F R LLL
βρ

β

−

− −
 

≤  − 
.Compare to the other modification version of LLL 

algorithm, the new hybrid version build a compromise between the algorithmic complexity 
and performance. The hybrid version improve the performance compared to Greedy-LLL and 
reduce the complexity nearly an order compared to E-LLL and Diagonal-LLL. For the higher 
order of antenna configuration, the analysis of performance bound and complexity may be a 
little bit different. The dominant parameter tranverse from the base to the exponent. For the 
details need to further study. 

In the simulation part, this paper gives the simulation results for 4 4× MIMO systems. It 
compares the SNR of each algorithm that needs on a fixed level of bit error rate (BER).The 
simulation results show that the performance of Hybrid-F&R-LLL is inferior to the LLL 
algorithm. However, CDF (Cumulative Distribution Function) is used to display convergence. 
The results demonstrate that the Hybrid-F&R-LLL can achieve a faster convergence 
compared with the LLL algorithm. Some well-known modification algorithms such as 
Greedy-LLL, Effective-LLL and Diagonal-LLL are also taken into account. Among these 
algorithms, Hybrid-F&R-LLL makes a better compromise between performance and 
algorithmic complexity. 

The rest of the paper is organized as follows. Section 2 presents the basic conception of the 
MIMO system model, lattice reduction and LLL algorithm. New definition of 
Hybrid-F&R-LLL algorithm and theoretical statements will be discussed in Section 3.In 
Section 4 it tries to analyze the convergence characteristics and in Section 5 derive the 
performance bound of Hybrid-F&R-LLL with the help of proximity methods. The results of 
analyzing average complexity are included in Section 6. A discussions for high order antennas 
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configuration is listed in Section7. Simulation results are demonstrated in Section 8 and finally, 
a brief conclusion is given in Section 9. 

Notation: In this article, ( )xℜ and ( )xℑ denote the real and imaginary part of 
x respectively. The inner product in the complex Euclidean space between vectors u and v is 
defined as , Hu v u v= and the Euclidean length is ,u u u= in nℜ . Symbol •「 」represents 
an arbitrary integer closest to x and the transpose, Hermitian transpose, inverse of a matrix 
H defined by TH , HH , 1H − respectively. Expectation of a matrix H is represented by 
( )E H  and 2σ is the variance. Parameter C  represents the complexity of algorithm and 

parameter ρ  represents the upper performance bounds. 

2. MIMO System Model and Lattice Basis Reduction 
 

2.1 MIMO System Model 
Here it use a N M× channel matrix to denote a MIMO system with M transmit antennas and 
N receive antennas. It is assumed that the transmitted signal at the mth transmit antenna is mx , 
and the data received at the nth receive antenna is my ( ms j∈Ζ + Ζ， ny j∈Ζ + Ζ ). A common 
signal alphabet X is used for all mx . Over the MIMO channel, the received signal vector is 
represented below: 
 

ry H x n= +                                                              (1) 
 

Matrix rH consists of M N× independent and identically distributed ( . .i i d ) complex 
Gaussian coefficients with zero mean and unit variance. Note that n is assumed to be a 
. .i i d complex Gaussian variable with unit variance. The variance is: 22HE nn Iσ  =  . 

2.2 Definition of Lattice Reduction 

Definition 1(Definition 1.9 [22]): Let 1n > and let 1 2 3, , ,..., nx x x x be a basis of nR .The lattice 
with dimension n and basis 1 2 3, , ,..., nx x x x  is the set L of all linear combinations of the basis 
vectors with integral coefficients: 
 

             1 2 1 2
1

... , ,...,
n

n i i n
i

L Zx Zx Zx a x a a a Z
=

 
= + + + = ∈ 

 
∑                             (2) 

 
The basis can be seen as span or generate of lattice. Each lattice may be spanned by not only 

one basis. Different basis can be transferred by a unimodular matrix whose determinant 
is 1± and each matrix element is an integer.  

Definition 2(Lemma 1.10 [22]): 1 2 3, , ,..., nx x x x and 1 2 3, , ,..., ny y y y are two basis for the 
same lattice nL R∈ .Let ,X Y be the n n× matrix with ,i jx y in row i for 1,2,3,...,j n= .The 
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conclusion is that it can use a unimodular matrix to link the two basis ,i jx y . 
 

Y C X= ×                                                              (3) 
 

The goal of lattice reduction is to find a unimodular matrix and then to simplify the basis. 
The unimodular matrix has more advantages compared to the original channel matrix 
including higher orthogonality and lower complexity. Once the unimodular matrix is obtained, 
the decoding procedure is listed below. Here it takes the LLL procedure as an example to 
explain the process of lattice reduction (definitions of the parameters are referred to in Table 
1): 
 

'
r r rH H T= ×                                                              (4) 

r ry H T x n= × × +                                                      (5) 

ry H c n= × +                                                            (6) 
 
Where rc T x= × , rT is a unimodular matrix and 1

rs T c−= .By applying the unimodular matrix 
to signal detection, the detection performance will be improved. However, the real problem 
then becomes how to find a good unimodular matrix. 

2.3 Definition of Lattice Reduction 
LLL algorithm is proposed to find a matrix with nearly orthogonal column vectors so as to 

generate the same lattice. In other words, LLL is proposed to find the unimodular matrix 
introduced in section 2.2. Lattice reduction can be performed for the M-basis MIMO system 
with the N M× channel matrix. It concentrate on real-valued matrices for lattice reduction in a 
MIMO system. 

First, derive the definition of LLL reduction under Gram-Schmidt orthogonalization. This 
definition was first introduced in [5].If ( )1 2, ,..., nB b b b=  is called the basis of L , a lattice is 
generated as the linear combination of integers of some set of linearly independent vectors. It 
can thus build the relationship between lattice L  and basis B as equation (2) does.  
 

L  ( ) 1 2
1

, ,...,
n

i i n
i

L B x b x x x Z
=

 
= ∈ 
 
∑                                             (7) 

 
The basis has Gram-Schmidt orthogonalization: 

 
^

,
T

i jB B µ =                                                                (8) 
 

Where
^ ^ ^

1,..., nB b b =   
and ,

T
i jµ   is a lower-triangular matrix with unit diagonal 

elements—the detailed procedure of Gram-Schmidt orthogonalization is omitted .A basis is 
LLL reduced if: 
 

,
1  for 1
2i j j i nµ ≤ ≤ < ≤                                                             (9) 
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, 1

2 2 2^ ^ ^2
1 1  for 1

i i
i i ib b b i nµ δ

−
− −+ ≥ < ≤                                         (10) 

 

Parameter δ  takes its value from interval 1 ,1
4

 
 
 

.A small value of δ  leads to a fast 

convergence; whereas, a large value of δ can lead to a slow convergence and better basis. The 
relationship displayed in (9) and (10) may be understood as an effective tool to derive the 
performance bound of the family of LLL algorithms. However, in the Monte Carlo simulation, 
it is suggested to frequently replace Gram-Schmidt orthogonalization with QR decomposition 
to speed up the simulation. 

Definition 3(LLL Reduction based on QR decomposition): A basis m n
rH C ×∈ is LLL 

reduction process with parameter 1 1
4

δ δ < < 
 

, if the upper triangular factor rR  ,i jr   in its 

QR decomposition r r rH Q R= × satisfies: 
 

   ( ) ( )1, ,      1 2
2r rR l k R l l l k M≤ ≤ < ≤                                                     (11) 

  ( ) ( ) ( )2 2 21, 1 ,  + 1,     1 2r r rR k k R k k R k k l k Mδ − − ≤ − ≤ < ≤                      (12) 
 
Where ( ),rR l k denotes the ( ),l k th entry of rR also can be viewed as the element in lth row 
kth  column. 

Matrix rQ is an orthogonal matrix. The different column vectors in rQ expressed as iq  are 
mutually orthogonal. Also, iq  is an orthogonal basis where 1iq = .And matrix rR is an 
up-triangular matrix. The relationship between QR decomposition and Gram-Schmidt 
orthogonalization is shown below: 
 

( )
( ),

,
,

r
j i

r

R i j
R i i

µ =                                                              (13) 

( )
^

,i rb R i i=  iq                                                              (14) 
 
The iq is the ith column of rQ , and vice versa. If set the square of the absolute value on both 
sides of the equation sign: 
 

( )
^ 2

,i rb R i i=                                                              (15) 

 
This will be a valuable conclusion that will be used in the derivation of the union 
performance bound. 

The inequality (12) is usually called Lovász condition. Parameter δ is a real number that is 

arbitrarily chosen from 1( ,1)
4

, while 3
4

δ = is considered the best complexity-quality trade-off 

coefficient. Lastly, the LLL algorithm generates a LLL-reduced matrix from the real-valued 
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channel matrix rH . 
 

Table 1. Process of LLL algorithm 
 Initialization: 

Input:
3,
4

m n
rH C δ×∈ ∈    

Output: , ,r r rQ R T  ( r rQ R are updated and rT  becomes a unimodular 
matrix at last) 

No. Algorithm process 
1 ( ) [ ]r r rqr H Q R→  

2 ( ,2)rn size H=  

3 Initialization rT , rT  at first is an identity matrix. ;r nT I=  
4 k=2 
5 while k n≤  
6 For 1: 1l k= −  
7 ( ( , ) ( , ))r rround R k l k R k l k lµ = − − −  
8 If  0µ ≠  
9 (1: , ) (1: , ) (1: , )r r rR k l k R k l k R k l k lµ− = − − × − −  
10 (:, ) (:, ) (:, );r r rT k T k T k lµ= − × −  
11 End if 
12 End for 
13 if  ( ) ( ) ( )2 2 21, 1 , 1,r r rR k k R k k R k kδ − − > + −  

14 swap the ( 1)k th−  and kth   columns in rR  and  rT  
15 find a Givens rotation G to restore the upper triangular structure of  R 
16 ( ) ( )1: , 1: 1: , 1:r rR k k k n GR k k k n− − ← − −  

17 ( ) ( ):, 1: :, 1: H
rQ k k Q k k G− ← −  

18 ( )max 1,2k k− →  
19 Else 
20 1k k= +  
21 End if 
22 End while 

 
Here should point out that the size reduction, indicated from line 6 to line 12 in Table 1, is a 

procedure that uses parameter µ to adjust the element in matrix rR and rT .Givens rotation 
matrix G is generated by the following procedure: 
 

G
α β
β α
 

=  
 

                                                             (16) 

( )
( )

( )
( )

1, 1 , 1
,

1: , 1 1: , 1
r r

r r

R k k R k k
R k k k R k k k

α β
− − −

= =
− − − −

                                (17) 
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In specific, the expression on line 16 is written by a MATLAB statement 
where ( )1: , 1:rR k k k n− − means it selects a matrix internal of the matrix rR that consists of 
the kth to (k-1)th row and (k-1)th to nth column. Further, in line 17 of Table 1, 

( ):, 1:rQ k k−  means it select a matrix internal of the matrix rQ that consists of all the row 
elements, but is only limited to the (k-1)th to kth columns. 

3. A Hybrid Fix&Round LLL (Hybrid-F&R-LLL) Algorithm 

3.1 Proposal of the Hybrid-F&R-LLL Algorithm 
In this chapter, first propose a Hybrid-F&R-LLL algorithm. The details of algorithmic flow 
are listed in Table 2. The initialization of the algorithm is the same as for the LLL algorithm 
such as QR decomposition and generation of unimodular rT . Before the algorithm performs 
size reduction, the Hybrid-F&R-LLL algorithm provides two kinds of preprocess strategy of 
parameter µ : fix operation and round operation.  

 
Table 2. Process of Hybrid-F&R-LLL algorithm 

 Initialization: 

Input:
3,
4

m nH C δ×∈ ∈    

Output: , ,r r rQ R T  ( r rQ R are updated and rT  becomes a unimodular 
matrix at last) 

No. Algorithm process 
1 Do the procedures line 1 to line 4 in Table 1 
2 while k n≤  
3 For 1: 1l k= −  

4 If 
( )

( )
,1 1

2 ,
r

r

R k l k

R k l k l

−
< <

− −
 

5 
( , )( );

( , )
r

r

R k l kfix
R k l k l

µ −
=

− −
 

6 else 

7 
( , )( );

( , )
r

r

R k l kround
R k l k l

µ −
=

− −
 

8 End if 
9 Doing size reduction line 8 to line 11 in Table 1 
10 End for 
11 The same strategy of column swap procedure line 13 to line 21 in Table 1. 
12 End while 

 
The fix operation function—fix(X)—rounds the elements of X to the nearest integers 

towards 0,and the round operation—round(X)—rounds the elements of X to the nearest 
decimal or integer. Based on the statistics, parameter µ is mainly located at the interval 
of ( )0,1 . Applying fix measurement on parameter µ , µ can obtain the value of 0 in each 
iteration. The threshold condition of size reduction 0µ ≠ cannot usually be satisfied, and once 
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the threshold condition of size reduction isn’t satisfied, the size reduction procedure will be 
skipped. Thus, the fix operation has often been closely associated with the skipping of the size 
reduction procedure. 

3.2 Derivation of New Definition under Hybrid-F&R-LLL algorithm 
According to the algorithm process in Table 2, it may find that the value of 

( , )
( , )
r

r

R k l k
R k l k l

−
− −

will decide the process of size reduction (line 8 to line 11 in Table 1). This 

chapter will analyze the value of ( , )
( , )
r

r

R k l k
R k l k l

−
− −

and compare the algorithmic procedure 

between the original LLL algorithm and the Hybrid-F&R-LLL algorithm. According to the 
definition in (11) and the procedure in Table 2:  
 

( ) ( )1, ,      1 2
2r rR l k R l l l k M≤ ≤ < ≤                                                  (18) 

 

Divide the situation of the value of 
( , )

( , )
r

r

R k l k
R k l k l

−
− −

into three parts for analyzing：

( )
( )

, 1
2,

r

r

R k l k

R k l k l

−
<

− −
，

( )
( )

,1 1
2 ,

r

r

R k l k

R k l k l

−
< <

− −
 and 

( )
( )

,
1

,
r

r

R k l k

R k l k l

−
>

− −
. 

 
Fig. 1. Algorithm Flow of Size Reduction in Hybrid-F&R-LLL algorithm 

 
From Fig. 1, the introduction of fix operation helps to define which basis should perform the 

size reduction. In the original LLL algorithm, the basis which satisfies the 
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condition ( ) ( )1, ,
2r rR l k R l l≤ may be seen as a size reduced basis. However, in the 

Hybrid-F&R-LLL, the range of the size reduced basis has expanded to ( ) ( ), ,r rR l k R l l≤ .In 
Fig. 2, find that the only difference between the original LLL and Hybrid-F&R-LLL reduction 

is located at
( )

( )
,1 1

2 ,
r

r

R k l k

R k l k l

−
< <

− −
. So only

( )
( )

,
1

,
r

r

R k l k

R k l k l

−
>

− −
 size reduction will be 

applied. 
 

 
Fig. 2. Comparison between Original LLL and Hybrid-F&R-LLL in Deciding Condition of Size 

Reduction 
 

Definition 4 (Hybrid-F&R-LLL Reduction based on QR decomposition): A basis 
m n

rH C ×∈ is LLL-reduced with a reduction parameter 1 1
4

δ δ < < 
 

, if the upper triangular 

factor rR  ,i jr   in its QR decomposition r r rH Q R= × satisfies: 
 

 ( ) ( ), ,      1 2r rR l k R l l l k M≤ ≤ < ≤                                                             (19) 

( ) ( ) ( )2 2 21, 1 ,  + 1,     1 2r r rR k k R k k R k k l k Mδ − − ≤ − ≤ < ≤                                 (20) 
 
Where ( ),rR l k denotes the ( ),l k th entry of rR , it also can be viewed as the element in the 
lth row and kth  column. 

The definition of Hybrid-F&R-LLL reduction based on Gram-Schmidt orthogonalization 
can also be given below: 
 

, 1 for 1i j j i nµ ≤ ≤ < ≤                                                                              (21) 

, 1

2 2 2^ ^ ^2
1 1  for 1

i i
i i ib b b i nµ δ

−
− −+ ≥ < ≤                                                      (22) 
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4. Analysis of Convergence Characteristics between 
Hybrid-Fix&Round-LLL and the Original LLL Algorithm 

In this section, a definition of LLL potential will be used based on QR decomposition to verify 
whether the Hybrid-F&R-LLL Algorithm will converge faster than the original LLL 
algorithm.  

LLL potential will be used as a tool to analyze the convergence properties of the LLL power. 
So, first introduce the LLL potential function which was first put forward in [5][10].  

Definition 5(Definition of LLL potential based on QR decomposition): A positive real 
number D is defined as the LLL potential: 
 

( )
1 1 2( )

1 1
,

M M M i
i r

i i
D d R i i

− − −

= =

= =∏ ∏                                                         (23) 

 

Where ( ) ( ) 2

1
det ,

i

i i r
j

d L R i i
=

= =∏ and iL is the sub-lattice spanned by column vectors 

1 2, ,..., iq q q of matrix rQ , which comes from the QR decomposition r r rH Q R= .  
LLL potential states the power of the LLL algorithm. While running the LLL algorithm, the 

LLL potential will be reduced until the algorithm terminates. With the aim of fast convergence 
and terminating, the reduction of  D  should be maximized in each iteration of the algorithm. 
This will be the main comparative method of the speed of convergence among the algorithms. 
The size reduction does not change the value of D  , since the diagonal elements in rR  are 
unchanged. The value of D  only changes after a column swap. 

If an iteration occurs at index k the LLL potential will be updated by the column swap 
procedure because the diagonal elements in rR have changed: 
 

( ) ( ) ( )
1 2( 1) 2( 1)2( 1) ' '

1
1,

, 1, 1 ,
M M K M KM

k r r r
i
i k k

D R i i R k k R k k
− − + − +−

=
≠ −

= − −∏                         (24) 

 
Equation (24) indicates that the new potential consists of the original, unchanged diagonal 
elements in rR and the two updated, swapped elements. Derive an equation based on 
D and kD , which can be seen as a relationship between the values of the potential before and 
after the LLL iteration. 
 

( ) ( )
( )

2 2

2

1, ,

1, 1
r r

k
r

R k k R k k
D D

R k k

− +
=

− −
                                               (25) 

 
Based on the precondition that it want to decrease the potential as much as possible, or for the 
algorithm to converge fast, the difference between D  and kD is as follows: 
 

k kD D∆ = −                                                                            (26) 
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( ) ( )
( )

( )
( )

( )
( )

2 2

2

2 2

2 2

1, ,
1

1, 1

1, ,
    1

1, 1 1, 1

r r
k

r

r r

r r

R k k R k k
D

R k k

R k k R k k
D

R k k R k k

 − + ∆ = −
 − − 
 − = − −
 − − − − 

                           (27) 

 
Index k is where that the largest decrease in potential occurs in the LLL iteration, and is 

defined as: 
 

2
arg max kk M

k
≤ ≤

= ∆                                                                       (28) 

 
According to line 8 to line 11 in Table 1, the diagonal elements in matrix rR remain 

unchanged during size reduction, which means the term 
( )

( )

2

2

,

1, 1
r

r

R k k

R k k− −
remains unchanged. 

If it wants k∆  to be larger, the term 
( )

( )

2

2

1,

1, 1
r

r

R k k

R k k

−

− −
will be smaller. Thus, a fast reduction in 

LLL potential is obtained when ( ) 2
1,rR k k− is small. According to Fig. 2, it just only needs 

to explain the situation
( )

( )
,1 1

2 ,
r

r

R k l k

R k l k l

−
< <

− −
. 

According to (28), ( ) 2
1,rR k k− is the key element that influences the reduction of LLL 

potential. Set the 1l = for general analysis. Based on the statistics, parameter µ is mainly 
located at the interval of ( )0,1 .The conclusion can be expanded to other situations based 
on 1l = . 
 

( )
~

( 1, ) ( 1, ) ( 1, 1)  1r r rR k k R k k R k k µ− = − − − − =                                        (29) 
 

The term ( )
~

1,rR k k−  is the value obtained from size reduction after running the LLL 

algorithm. Compare the value of ( )
2~

1,rR k k−  and ( ) 2
1,rR k k−  using 

parameter ( )1,rR k k∆ − which is used to measure the difference between them: 
 

( ) ( ) ( )
2~ 2

1, 1, 1,rr rR k k R k k R k k∆ − = − − −                                                  (30) 

( ) ( ) ( ) 2
2 1, 1, 1 1, 1r r rR k k R k k R k k= − − − − + − −                       (31) 
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Since
( )

( )
1, 1

21, 1
r

r

R k k

R k k

−
>

− −
, then ( ) ( )2 1, 1, 1r rR k k R k k− > − − . Set square operation 

between equations: 
 

( ) ( )2 2
1, 1 4 1,r rR k k R k k− − < −                                                                 (32) 

 

The term ( ) 2
1, 1rR k k− − and ( )1, 1rR k k− −  both have an upper bound. Use 

( ) 2
4 1,rR k k− and ( )2 1,rR k k− to substitute ( ) 2

1, 1rR k k− −  and ( )1, 1rR k k− − , 
respectively in (32): 
 

( ) ( ) ( )2 2
1, 4 1, 4 1, 0r r rR k k R k k R k k∆ − < − − + − =                                        (33) 

 

Therefore ( )1,rR k k∆ − will always be less than 0 which means the term ( ) 2
1,rR k k− in the 

Hybrid-F&R-LLL algorithm is larger. Returning to (23): 
 

( )
( )

( )
( )

2 2

2 2

1, ,
1

1, 1 1, 1
r r

k
r r

R k k R k k
D

R k k R k k

 − ∆ = − −
 − − − − 

                                           (34) 

 

It finds that in the Hybrid-F&R-LLL algorithm ( ) 2
1,rR k k− is larger than in the LLL 

algorithm and so it will cause a larger decrease k∆ in LLL potential. Then derive the 
conclusion that the Hybrid-F&R-LLL algorithm can maximize the reduction of the LLL 
potential. 

The analysis above only hypothesizes for the index of k and 1k − . Nevertheless, this 
conclusion can expand to all of the indexes.  

Proposal 4-1: Hybrid-F&R-LLL algorithm converges faster than LLL algorithm. 

5. Performance Bound of the Hybrid-F&R-LLL Algorithm Using the 
Proximity Factor Methods 

5.1 Upper Performance Bounds under Hybrid-F&R-LLL by Proximity Factors 
In this chapter, it will derive the performance bounds for the Hybrid-F&R-LLL algorithm 

with the proximity factors method which was first introduced in [7] by Professor CongLing. 
The general form of the upper performance bound is shown below: 
 

( ) 1      (nρ ω β β−≤ × 

1 )1
4

δ −
                                             (35) 

 
Parameter ωmeasures performance. When ω or ω β× become larger, the upper bound of 

the algorithm will become looser and performance will worsen.  
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The detailed procedure performance bound derivation of Hybrid-F&R-LLL algorithm is 
listed in Appendix A, here just gives the final expression: 
 

1

&
4   (

3 4

n

Hybrid F R LLL
βρ β

β

−

− −
 

≤  − 


1 )1
4

δ −
                                        (36) 

 

5.2 Comparison of Performance Bounds among LLL-SIC, Hybrid-F&R-LLL and 
ZF Algorithm by Proximity Factors 
In [7], the performance bound of LLL-SIC (Successive Interference Cancellation) and ZF are 
given. SIC is a nonlinear aided operation applied to the LLL algorithm to eliminate 
interference in the detection results of the adjacent symbol.  

 
Table 3. Performance Bounds of LLL-SIC, Hybrid-F&R-LLL and ZF Algorithm 

Algorithm Performance bound under proximity factors 

LLL-SIC ( ) 1n
LLL SICρ β −

− ≤  (β    
1 4,  )1 3

4

β
δ

>
−

  

Hybrid-F&R-LLL 

1
4

3 4

n

Hybrid
βρ

β

−
 

≤  − 
 (β    

1 4,  )1 3
4

β
δ

>
−

 

ZF 

19
4

n

ZF
βρ

−
 ≤  
 

(β    
1 4,  )1 3

4

β
δ

>
−

 

Greedy-LLL ( ) 1n
Greedy LLLρ β −

− ≤  ( )2β =   

Diagonal-LLL 

1
4

4

n

Diagonal LLL
βρ
β

−

−
 

≤  − 
(β    

1 4,  )1 3
4

β
δ

>
−

 

 
Compare the value of β , 9

4
β , 2 and 4

3 4
β

β −
: 

 
4 9 42 ,   

3 4 4 3
ββ β β

β
< < < >

−
                                                      (37) 

 
From left to right, the performance bound is looser and the performance is inferior. So 

LLL-SIC offers the best performance and the Hybrid-F&R-LLL offers the second best. ZF can 
only achieve one order of diversity, thus its performance is worst of all. The Greedy-LLL 
algorithm gives a fixed value of β , thus the performance bound of Greedy-LLL is fixed. The 
entire conclusion conforms to the simulation results in Section 6.  
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6. Theoretic Upper Bound on the Average Complexity of Hybrid-F&R-LLL 
Algorithm 

Ahead of analyzing, first give definition of the big O notion and other symbols. 
Definition 6(Big O notion [22]): Suppose that ( )f x and ( )g x are functions with the same 

domain, which is a subset of the real numbers. The statement ( ) ( )( )f x O g x= means that for 

sufficiently large values of x , the quantity ( )f x is at most a constant multiple of the 
quantity ( )g x , in absolute value. 

Now follow the procedure in paper [10], to derive the average complexity bound of the 
Hybrid-F&R-LLL Algorithm. The results of average complexity bound of the 
Hybrid-F&R-LLL Algorithm is listed in proposal 6-1: 

Proposal 6-1: Define λ as the balance parameter between the original LLL and the 
Hybrid-F&R-LLL Algorithm. The total cost of the Hybrid-F&R-LLL Algorithm by using 
measurement flops is: 
 

( ) ( )3
& log   3,7Hybrid F R LLLC O n Bλ λ− − = × ∈                                    (38) 

 
When no size reduction procedure is operated 3λ = , and the lowest total costs of arithmetic 
operation are ( )33 logO n B . For the size reduction happens at index k  and 1k −  , the 
worst-case scenario for the Hybrid-F&R-LLL Algorithm is that the algorithm procedure 
remains the same as the E-LLL algorithm. This time parameter 7λ = and the highest total 
costs of arithmetic operation are ( )37 logO n B , the same complexity as the ELLL algorithm. 

When there exists a full-size reduction, the total costs will further extend to ( )4 logO n B .  
The detailed proof of proposal 6-1 is listed in Appendix B. The average complexity bounds 

of several algorithms in real field are listed in Table 4 for comparison. 
 

 
Table 4. Average Complexity Bounds of Several Algorithms in Real Field 

Algorithm Field Average Complexity Bounds 

LLL Real number field ( )4 logO n B  

Hybrid-F&R-LLL Real number field ( )3 logO n Bλ × ( )3,7λ∈  

Effective-LLL Real number field ( )37 logO n B  

Diagonal-LLL Real number field 37 log
2

O n B 
 
 

 

Greedy-LLL Real number field 27 log
2

O n B 
 
 

(just column swap) 
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7. Discussions for High Order Antennas Configuration 
All the antennas configuration selected in Section 8 is from 2 2×  to 8 8×  . And the 

simulation results in performance and complexity are confort to the analysis in Section 4 to 
Section 6. But when the MIMO system getting large, some difference in analysis should be 
point out. 

For complexity, all the algorithmic complexity can be expressed as: ( )logaO n Bλ . The 
complexity of the algorithm is domined by the parameter λ  , a  and n  .In Section 6, this paper 
mainly discuss the influnence of λ  . If the size of MIMO system just below 8 transmitting 
antennas and 8 receiving antennas, it means 8n ≤  . So λ  has the same order as n  . Parameter  
λ  , a  and n both affects the algorithm complexity. 

When 8n > , parameter n  has the higher order than λ  .This is the main difference 
compared to Section 6. Another difference that can not ignore is the parameter a  , the 
exponent of ( )logaO n Bλ . 
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Fig. 3. Influence comparison of parameter a  and n  for algorithmic complexity 

 
According to Fig. 3, it can be referred that for the same size of MIMO system, the higher of 

parameter a  , the complexity is exponential growth. So for massive MIMO (higher order 
antenna configuration) , the complexity is mainly domined by index a  and the size of MIMO 
system. Among these algorithms, Greedy-LLL owns the lowest index a  and it has the lowest 
complexity.  

For performance, it is in a similar way. The performance bound can be written as 
( ) 1nρ ω β −≤ × . In Section 5, this paper discuss that the parameter ω  mainly influnce the 

performance bound. But when the size of MIMO system getting large, term ( ) 1nω β −× is 
exponential growth. The dominate item is not parameter ω  . It means that all the upper bound 
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of performance is: ρ ≤ +∞ . All the algorithmic upper bound is the same, under the infinity. So 
it can not compare the performance bound referred to proximity factor. Analysis in higher 
order of antenna configuration is still a challenge. Proper measurements and method is for 
further study.  

8. Simulation Results 
In this chapter, it will use computer simulation techniques to verify the theoretical claims of 
LLL and its hybrid versions. Channel matrix rH is assumed to remain constant over 
successive time intervals. And channel matrix rH is known at the receiving terminal which is 
equivalent to ideal channel estimation at receiver side. White Gaussian noise n is randomly 
generated and assumed to be statistically independent and identically distributed. Inter-cell 
and intra-cell interference are ignored. Constellation mapping is settled with 16QAM. SNR is 
defined as the symbol energy per transmit antenna versus noise power spectral density. 
Channel realization is 10. Individually use performance gain to measure the performance of 
each algorithm at a fixed bit error rate (BER). At last in Section 8.4, a comparison between 
Hybrid-F&R-LLL and some latest achievement will be done. Hybrid-F&R-LLL still holds the 
characteristic of compromise between performance and complexity. 

8.1 Average Number of Iterations and Computational Complexity 
 

Table 5. Flops of each arithmetic operation in real field 
Arithmetic operation Flops needed 

+ − × ÷  1 
  1 

 1 
and≤ ≥  1 
( ) ( ), round fix  1 

 
 
Each effective iteration of the different LLL algorithms is defined by the duration times of 

size reduction (line 6 to line 12 in Table 1) and the column swap procedure (line 13 to line 21 
in Table 1). 

In order to evaluate the computational complexity of different algorithms, it introduces the 
concept of real floating-point operations (flops). The flops of each arithmetic operation are 
defined in Table 5. In our algorithm, there are no complex operations where by the operation 
in the complex field is ignored. 

The average number of iterations and computational complexity is shown in Table 6. 
(SR=size reduction procedure, CS=column swap procedure). In Table 7, make a contrast 
between the original LLL and other families of LLL algorithms. Select three other improved 
algorithms of the original LLL algorithm as a contrast. Diagonal-LLL [11], Effective-LLL [10] 
and Greedy-LLL [17] are all recent achievements in the field of lattice reduction. The idea of 
Greedy-LLL is first proposed in 2014 and the further improved is listed in [17] 2016. 
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Table 6. Comparison of different algorithms and numerical statists on flops and iterations in real 
field 

 

2 2×  4 4×  8 8×  
Average 

iterations Flops 
Average 
iterations Flops Average iterations Flops 

SR CS SR CR SR CR 
LLL 

Algorith
m 

3.425 3.725 200.45 20.84 23.52 2230.933 123.06
7 108.5 20391 

Hybrid-F
&R-LLL 0.875 3.125 132.6 2.013 16.053 1074.48 2.000 57.867 6636.733 

Diagonal
-LLL 1.175 3.725 161.1 6.813 23.48 1673.47 25.867 108.5 13421.73 

Greedy-
LLL 0.55 1.775 98 2.16 7.813 612.947 4.533 16.533 1989.8 

Effective
-LLL 2.525 3.725 175.8 11.813 23.533 1787.44 39.533 108.533 14042.4 
 

Table 7. Flops of Algorithm Saving to Original LLL Algorithm 
 2 2×  4 4×  8 8×  

LLL Algorithm 0 0 0 
Hybrid-F&R-LLL 33.85% 51.84% 67.45% 

Diagonal-LLL 19.63% 24.99% 34.18% 
Greedy-LLL 51.11% 72.525% 90.24% 

Effective-LLL 12.30% 19.88% 31.13% 
 

As can see, except for Greedy-LLL, the Hybrid-F&R-LLL algorithm terminates with much 
fewer iterations and flops compared to other families of LLL algorithms. This property of the 
Hybrid-F&R-LLL algorithm is obvious. The statistical results and the conclusions outlined in 
Section 4 demonstrate that Hybrid-F&R-LLL can indeed decrease the LLL potential by the 
greatest amount in each iteration. Also, from 2 2× up to 8 8× antenna size, the 
Hybrid-F&R-LLL algorithm owns the lower average computation flops. Although 
Greedy-LLL has the lowest complexity, its performance is also the worst. These results can be 
referred to in Fig. 5. 

As the size of the MIMO system increases, as seen in Table 7, Hybrid-F&R-LLL can 
gradually save over 50% of the flops compared to the original LLL algorithm. In fact, it saves 
the second highest number of flops. An average complexity comparison based on the total 
number of flops among different sizes of MIMO system is shown in Fig. 4. Here it just gives a 
trend of the increase of operation flops in the detection algorithm. All the data is based on large 
numbers of experiments. 

8.2 Performance Evaluation of Different Algorithms Based on Monte Carlo 
Simulation 
Here use a computer simulation technique to simulate the un-coded bit error rate (BER) 
performance of the family of LLL algorithms using MATLAB code. The simulation result of 
the 4× 4 antenna configuration is shown in Fig. 5. The original LLL algorithm is seen as the 
best detection method because it can achieve full diversity. Minimum mean square error 
(MMSE) and zero-forcing (ZF) can only receive one order of diversity in a MIMO system. 
MMSE and ZF are simulated for comparison. 

From the result plot in Fig. 5, the original LLL algorithm displays the best performance of 
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all. Whereas, E-LLL holds the best performance among the modified LLL algorithms. The 
performance gap between the E-LLL algorithm and the Diagonal-LLL algorithm at 
BER= 410− is 1.44dB. E-LLL can achieve a 2.39dB performance gain compared to 
Hybrid-F&R-LLL. Greedy-LLL demonstrates a performance loss of 3.84dB compared to 
E-LLL at BER= 410− . All these experimental results conform to the conclusion, which is 
derived in Section 5 especially that the performance bound of Hybrid-F&R-LLL is inferior to 
the original LLL algorithm. It can also derive the conclusion that the performance of the 
Greedy-LLL algorithm can only achieve the same order of as ZF and MMSE. Therefore, the 
order of diversity that Greedy-LLL can achieve is one. Due to this, the Greedy-LLL 
algorithmic performance is worse. The detailed BER of the different algorithms is shown in 
Table 8. 
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Fig. 4. Complexity comparisons of different LLL algorithms from 2 2× to 8 8× MIMO systems 
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Fig. 5. BER Performance of LLL and Hybrid-F&R-LLL detectors in a 16QAM modulated 4× 4 MIMO 

system 
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Table 8. BER of Different Algorithm Based on Original LLL from SNR = 20 to 32 
 20 22 24 26 28 30 32 

LLL Algorithm 3.66E-03 1.03E-03 1.56E-04 9.18E-06 7.50E-08 0 0 
Hybrid-F&R-LLL 1.38E-02 7.69E-03 3.55E-03 1.31E-03 3.61E-04 6.42E-05 6.43E-06 

Greedy-LLL  2.08E-02 1.37E-02 7.85E-03 3.72E-03 1.31E-03 2.86E-04 3.03E-05 
Effective-LLL 1.05E-02 4.93E-03 1.67E-03 3.53E-04 3.47E-05 1.33E-06 0 
Diagonal-LLL 1.27E-02 6.67E-03 2.76E-03 8.41E-04 1.71E-04 1.96E-05 6.00E-07 

8.3 Convergence Characteristic of Different Algorithms Based on Plotting of 
Cumulative Density Function 
In Fig. 6, the cumulative density functions (CDF) of the number of iterations for completion of 
these five algorithms are shown. The initiation value of CDF is not the point of focus however. 
Only pay attention to the slope of the plots. Obviously, the algorithm, which has the steepest 
ascent curve, will have the fastest rate of convergence. 
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Fig. 6. Cumulative density function of the required flops to terminate the LLL and Hybrid-F&R-LLL 

algorithm for 4× 4 MIMO system 
 

From the CDF function, it is apparent that the Hybrid-F&R-LLL converges faster than the 
original LLL algorithm and other families of LLL algorithms, except Greedy-LLL. With 
nearly 2500 flops, the Hybrid-F&R-LLL algorithm achieves almost 99% LLL basis reduction. 
However, with the original LLL algorithm, the number of flops is above 4000. Additionally, 
for Diagonal-LLL, Greedy LLL and E-LLL, the value of flops that achieves almost 99% LLL 
basis reduction is 3500, 1500, and 3800, respectively. Therefore, it can derive the conclusion 
here that Hybrid-F&R-LLL makes a better compromise between performance and algorithmic 
complexity.  

8.4 Simulation Results of Recent Achievement in Lattice Reduction 
In this section, the selected algorithm includes Greedy-Fixed-Complexity LLL reduction 

algorithm [19]: GfcLLL(1) and GfcLLL(2). Moreover, it includes computation efficient fixed 
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complexity LLL algorithm (CE-fcLLL) [17]. All these achievements are published recent 
years on IEEE Communication Letters and IET Communications. The simulation parameters 
still keep the same as preamble. In this part, a new set of simulation data is selected due to the 
configuration of algorithm should be settled the same as families of Greedy fcLLL algorithm. 

 
Table 9. Comparison of recent achievements and numerical statists on flops and iterations in real 

field 

 

2 2×  4 4×  8 8×  
Average 

iterations Flops 
Average 

iterations Flops Average iterations Flops 

SR CS SR CR SR CR 
LLL 

Algorithm 3.56 3.727 199.31 21.04 22.98 2190.75 122.98 106.83 20337 

Hybrid-F
&R-LLL 0.89 3.315 129.8 2.201 15.853 1061.83 2.16 56.94 6708.32 

CE-fcLLL 1.772 2.011 176.17 10.78 12.7 1960.7 63.66 58.59 17921.04 
GfcLLL-1 1 4 172 1.4 8 550 3 16 1693.4 
GfcLLL-2 0.9 2.9 126.6 0.8 8 554.4 3.7 16 1421.6 

 
From the statistical data in Table 9, GfcLLL-1 and GfcLLL-2 has the priority in complexity 

saving. These two algorithms use a traversal order based on a greedy selection strategy. It is 
motivated by increasing the success probability of the Babai point. GfcLLL-2 has different 
greedy selection strategy compared to GfcLLL-1. Between them, GfcLLL-2 can further 
reduce the complexity and the performance loss is not obvious. However, both of them 
performs bad in performance in Fig. 7. CE-fcLLL algorithm is designed under a new LLL 
loop and introducing new early termination conditions to reduce redundant and inefficient LR 
operations in fcLLL. However, CE-fcLLL algorithm needs full LLL loops and continually 
update the power factor in algorithm. During lots of iteration of LLL loops, the CE-fcLLL 
algorithm still experience the high level of computation. According to the Table 9 and [17], it 
can just save little computation resource compared to LLL algorithm.  
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Fig. 7. BER Performance of LLL, Hybrid-F&R-LLL and families of fcLLL detectors in a 16QAM 

modulated 4× 4 MIMO system 
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From the result plot in Fig. 7, the original LLL algorithm still displays the best performance 
of all. The performance gap between the LLL algorithm and the CE-fcLLL algorithm at 
BER= 510− is 1.34dB. CE-fcLLL can achieve a 0.88dB performance gain compared to 
Hybrid-F&R-LLL. GfcLLL-1 and GfcLLL-2 demonstrate performance loss of 1.73dB and 
1.77dB respectively compared to CE-fcLLL at BER= 510− .Although the LLL and Hybrid 
version should set the parameter according to GfcLLL algorithm, the trend of BER is the same. 
In addition, in certain SNR, the value of BER may be a little bit different. The detailed BER of 
the different algorithms is shown in Table 10. Due to the mathematical expression of 
performance and algorithmic complexity have not been proposed in [17]-[19], the theoretical 
analysis is leaved to settle afterwards. 
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Fig. 8. Cumulative density function of the required flops to terminate the LLL, Hybrid-F&R-LLL 

and some new proposed algorithms for 4× 4 MIMO system 
 

Table 10. BER of Different Algorithm Based on Original LLL from SNR = 18 to 30 
 18 20 22 24 26 28 30 

LLL Algorithm 3.00E-03 8.82E-04 1.46E-04 1.05E-05 1.25E-07 0 0 
Hybrid-F&R-LLL 4.65E-03 1.92E-03 6.04E-04 1.33E-04 1.61E-05 3.75E-07 0 

CE-fcLLL 4.83E-03 1.86E-03 5.00E-04 7.23E-05 4.13E-06 0 0 
GfcLLL-1 8.93E-03 4.54E-03 1.74E-03 4.32E-04 5.56E-05 2.38E-06 0 
GfcLLL-2 8.92E-03 4.55E-03 1.75E-03 4.34E-04 5.40E-05 2.63E-06 0 

 
From the CDF function, this time, it is apparent that the GfcLLL-2 and GfcLLL-1 

converges faster than other families of LLL algorithms. With nearly 700 flops, these two 
algorithms achieves almost 99% termination. However, according to Fig. 7 and Table 10, the 
recent achievements perform worst in performance. Additionally, for Hybrid-F&R-LLL, 
CE-fcLLL and original LLL, the value of flops that achieves almost 99% LLL basis reduction 
is 3800, 5500, and 6000, respectively. Therefore, it can derive the conclusion here that 
Hybrid-F&R-LLL still makes a better compromise between performance and algorithmic 
complexity. This conclusion is the same as in Section 8.3. It cannot both guarantee the 
characteristic of fast convergence and best performance the same time. 
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9. Conclusions 
In this paper, a modified version of the LLL algorithm, the Hybrid-F&R-LLL is first proposed. 
The aim of designation of the Hybrid-F&R-LLL is that in each algorithm’s iteration, the LLL 
potential can be reduced more than with any other. Thus, the algorithm directly changes the 
process of size reduction and the whole algorithm has a greater probability to skip size 
reduction. Additionally, deduce a performance bound for the Hybrid-F&R-LLL algorithm 
based on proximity factors. Its performance is poor contrasted with the original LLL algorithm. 
The theoretic upper bound on the average complexity and performance are also determined. 
Computer simulation results show that Hybrid-F&R-LLL algorithm can make a better 
compromise between performance and complexity. With some performance loss, the 
Hybrid-F&R-LLL algorithm can reduce more computation. At the same time, the 
Hybrid-F&R-LLL can produce faster converge than the original LLL algorithm. Compared to 
other new proposed algorithm, Hybrid-F&R-LLL can still holds a certain order of detection 
performance.  

Appendix A 

Proof of performance bound of Hybrid-F&R-LLL algorithm. 
By the definition of Hybrid-F&R-LLL reduction based on Gram-Schmidt orthogonalization 

(21)-(22), it has: 
 

( ) ( )
, 1

2 2 2^ ^ ^2
1 11   for 1

i i
i i ib b b i nδ µ δ

−
− −≥ − ≥ − < ≤                                  (39) 

 
By induction in [6]: 

 
2 2^ ^

  for 1i j
j ib b j i nα −≤ ≤ < ≤                                                         (40) 

 

Where α 
( )

1 4
1 3δ
> −

−
. Substitute (40) into the Gram-Schmidt orthogonalization 

procedure:  
 

2 21^ ^2 2
,

1

i
ji i i j

j
b b bµ

−

=

= +∑                                                                    (41) 

 
Due to the fact that any two vectors following Gram-Schmidt orthogonalization are 

orthogonal, so obtain a new inequality: 
 

21 ^2

1
1

4

i ji
ii

j
b bα −−

=

 
≤ +  
 

∑                                                                            
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2^11

4 1

j

ibα α
α

 −
= + × 

− 
                                                                (42) 

 
For1 j i n≤ < ≤ , replace index j and i , and substitute (40) with (42): 

 
2^2 11

4 1

j
i j

ijb bα α α
α

− −
≤ + × 

− 
                                                          (43) 

 
According to the details of appendix B in [6], the equation (44) is established: 

 

111
4 1

j
jα α α

α
− −

+ × ≤ 
− 

                                                                     (44) 

 
So, an exponential upper bound can be obtained: 

 
2^2 1  , 1i

ijb b j i nα −≤ ≤ ≤ ≤                                                             (45) 

 
It follows immediately that: 

 
1

&
n

Hybrid F R LLLρ α −
− − ≤                                                                      (46) 

 
Finally, build the relationship between parameter α and β , and replace α  in (46) by the 

definition of β : 
1

&
4   (

3 4

n

Hybrid F R LLL
βρ β

β

−

− −
 

≤  − 


1 )1
4

δ −
                                        (47) 

Appendix B 

Proof of average complexity bound of Hybrid-F&R-LLL algorithm. 
Definition 7: Define parameter B as the largest norm of basis and bb (in order to differ from 

the original basis b ) as the smallest norm of basis: 
 

^ ^ ^

1 2max , ,..., nB b b b 
=  

 
                                                   (48) 

^ ^ ^

1 2min , ,..., nbb b b b 
=  

 
                                                  (49) 

 
The initial value of D  can be bounded from above by ( )1 /2n nB −  .For an integral basis, D  is 
one at least. Consequently, one has: 



2578                                                                                              Huazhang Lv et al.: Performance Evaluation of Lower Complexity 
Hybrid-Fix-and-Round-LLL Algorithm for MIMO System 

( )1
log

2
n n BK

bb
− −
≤                                                   (50) 

 
where the logarithm is taken to the base 1

δ  . All these narration is according to [10]. LLL 

algorithm tends to reduce the lengths of Gram-Schmidt vectors.The average complexity of the 
LLL reduction algorithm depends on the distribution of the random basis matrix rR .  

Updating the Gram-Schmidt orthogonalization coefficients during the column swap 
procedure costs ( )6 7 6 5n k n− + ≤ − flops, whereas pair wise size reduction in the subroutine 

for ( ), 1k k − costs ( )( )2 2 1n k+ − . 
However, in the Hybrid-F&R-LLL Algorithm, the range of the size-reduced basis expands 

to 
( )

( )
,

1
,

r

r

R k l k

R k l k l

−
<

− −
and there is a low probability that the algorithm will complete the size 

reduction procedure. When the entire basis satisfies
( )

( )
,

1
,

r

r

R k l k

R k l k l

−
<

− −
, size reduction is 

directly ignored and may result in a fast convergence. This is the extreme situation. Thus, in 
this situation the total cost is: 
 

( ) ( )( ) 36 5 0 2 2 1 2C n K n k n−≥ − + × + − +                                                     

( ) ( ) 31
6 5 log6 2

2
n n

n n n
−

≥ − +                                                                 

3 33 log6 2n n n≥ +                                                                         (51) 
 

The last term 32n is the initialization of Gram-Schmidt orthogonalization vectors and 

parameter K − , which is ( )1
log

2
n n BK

bb
− −
≤ . This result assumed that the lowest average 

complexity bounds of the Hybrid-F&R-LLL Algorithm is ( )33 logO n B : 

( )3
& 3 logHybrid F R LLLC O n B− − ≥                                                   (52) 

 

For the worst case, all the basis vectors meets the condition
( )

( )
,

1
,

r

r

R k l k

R k l k l

−
<

− −
. This will 

achieve the same procedure of E-LLL algorithm when size reduction happens at index 

( ), 1k k −  .So the highest average complexity bounds of Hybrid-F&R-LLL Algorithm is 

( )37 logO n B : 

( )3
& 7 logHybrid F R LLLC O n B− − ≤                                                   (53) 

 
Introduce a parameter λ to balance the arithmetic cost between the standard E-LLL 

algorithm and the Hybrid-F&R-LLL Algorithm: 
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( ) ( )3 3
&3 log 7 logHybrid F R LLLO n B C O n B− −≤ ≤                                           (54) 
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