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Abstract 
 

Dynamic data possession verification is a common requirement in cloud storage systems. 
After the client outsources its data to the cloud, it needs to not only check the integrity of its 
data but also verify whether the update is executed correctly. Previous researches have 
proposed various schemes based on Merkle Hash Tree (MHT) and implemented some initial 
improvements to prevent the tree imbalance. This paper tries to take one step further: Is there 
still any problems remained for optimization? In this paper, we study how to raise the 
efficiency of data dynamics by improving the parts of query and rebalancing, using a new data 
structure called Rank-Based Merkle AVL Tree (RB-MAT). Furthermore, we fill the gap of 
verifying multiple update operations at the same time, which is the novel batch updating 
scheme. The experimental results show that our efficient scheme has better efficiency than 
those of existing methods. 
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1. Introduction 

Accompanied by the trend of cloud computing, cloud storage has gone through an explosive 
development. This novel outsourced data storage equips its clients with massive capacity 
under the “pay-as-you-go” model. With the help of cloud storage, clients upload huge amounts 
of datasets to remote servers which are run by the cloud service providers (CSP), instead of 
maintaining local data centers by themselves. One of the most common clients of cloud 
storage is enterprise with big data application, who usually needs to access and update its 
different parts of outsourced data frequently and simultaneously, often through distributed and 
parallel processing. However, since clients are deprived of the physical control over their data, 
they cannot know directly whether the data is intact or the update is executed correctly. 
Considering the huge amounts of data, an efficient dynamic data possession verification 
scheme is in desperate need. 

Provable data possession (PDP) [12] is an elementary solution for the integrity verification 
problem, which works in a “block-tag” mode. In a typical PDP scheme, the client segments its 
data into blocks and generates their corresponding homomorphic tags. Once checking the 
integrity of outsourced data, the client sends challenge message to audit some randomly 
chosen blocks. In response to the challenge, a proof for required blocks is generated by CSP, 
which will be verified by the client. A significant drawback of such a scheme is that it does not 
support verification of data dynamics. The major reason lies in the difficulty of maintaining 
indices once data blocks are updated. For ensuring that the returned proof is generated from 
the required data blocks without replacement, the PDP scheme chooses to introduce indices of 
blocks into the computation of tags. Taking an instance, when the client tries to insert a data 
block at a certain position, all the tags of subsequent blocks have to be recomputed by the 
client, which leads to high computational and communication overhead. To get rid of the 
re-computation, some works [14][16][17][18] try to construct a linear mapping table called the 
index hash table used for querying and updating the block indices. However, the nature of 
these linear structures is doomed to its failure for adapting to updating multiple blocks 
concurrently, which impairs their potential of practical application. 

Another idea to solve the problem is introducing the classical authentication data structure 
Merkle Hash Tree (MHT) into the verification scheme [20]. In MHT, every leaf stores hash 
value of a data block and every internal node stores the hash value of its two children. In this 
method, the indices of blocks are contained in the order of leaves, rather than in tags or using 
mapping tables as previous schemes. Given a leaf node in MHT, as well as all the sibling 
nodes on its path to the root, the client can easily re-compute the hash value of root node and 
compare it with the original one, in order to check the correctness of the hash value and its 
index. So the problem of update verification is transformed into verifying the insertion or 
deletion of tree nodes, which is much easier to maintain than that in previous works. In 
addition, the tree structure has long been used in traditional file system and is promising to be 
extended to the distributed cloud environment. 

Although the MHT-based scheme is a potential solution, it still leaves some problems 
unsolved. First of all, the original MHT lacks an explicit method for querying the leaf nodes. 
Since the hash value cannot be directly used as search key, there are two possible methods to 
find a designated leaf. One of them is to search every leaf node and compare the hash values. 
The other is maintaining an extra pointer array, each element pointing to a leaf node. However, 
both of their average complexities are O(n). Moreover, neither of these two methods can 
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prevent the attack of replacing the required node with another one, because there is no 
information to ensure the correctness of tree shape in original MHT.  

Secondly, due to the property of tree structure, the original MHT also suffers from 
degeneration problem inevitably. That is to say, MHT may become seriously imbalanced after 
multiple update operations, which means the increase of overhead for both integrity 
verification and data dynamics. To solve this problem, some schemes [23][24] try to introduce 
rebalancing method from classical self-balancing tree structure such as B+ tree. Nevertheless, 
this kind of scheme leaves many problems to be further studied. One of the concerns is the 
frequency of rebalancing. Although binding the rebalancing process to every time of update 
can keep the tree always balanced, it may be costly and unnecessary. Since the update can be 
seen as random, the imbalance of tree may be counteracted by later update. Decreasing the 
frequency of rebalancing can reduce the amortizing overhead of maintaining the tree. 

Besides, an important problem to improve the efficiency of MHT-based scheme still 
remains a vacuum, that is to support batch update verification. In practical application 
scenarios, the client often needs to update multiple blocks at one time. However, in previous 
schemes, if the client tries to do a series of update operations, it has to verify the MHT 
repeatedly, each time for one block. This is obviously inefficient. In fact, there has been no 
work supports verifying batch update at one time in MHT-based schemes. The most crucial 
reasons for the absence of batch update is that the previous MHTs lack a mechanism to 
eliminate the conflicts when both the children of one node try to update their common parent. 
On one hand, to avoid repeatedly handling the parent node, we need method to know whether 
both the children have completed their own operations and how to merge the two processes 
into one. On the other hand, if the process of one child rebalances the parent node, the position 
of its sibling may be changed, leading to more imbalance in another updating process. Thus 
simply introducing updating and rebalancing method from single case possibly results in 
disorder among adjacent nodes, calling for an effective method to segregate the unnecessary 
mutual interferences of branches in the tree. Additionally, updating multiple branches of MHT 
at the same time may cause accumulated imbalance, which breaks the rebalancing conditions 
of most standard self-balancing trees. In order to improve the efficiency of traditional MHT 
scheme, designing a new scheme enabling batch update verification with all the 
aforementioned problems solved is imperative. 

In this paper, we target a scheme that not only able to avoid the degeneration of MHT with 
adjustable frequency for rebalancing but also supports batch update. The main contribution of 
this paper can be summarized as follows: 

1. We propose an efficient dynamic provable data possession scheme based on a novel 
self-balancing MHT. Our new scheme optimizes the efficiency of querying leaf nodes, 
provides rebalancing with flexible frequency and takes the first to support batch updating 
verification.  

2. We propose a new data structure called Rank-Based Merkle AVL Tree (RB-MAT), 
using ranks to achieve efficient query and enhanced security of checking block indices. The 
RB-MAT is a generalized AVL tree, which can adjust the frequency of rebalancing operations 
via relaxed balance. Besides, the RB-MAT also offers necessary support for lock-based batch 
updating method via maintaining status for every node. 

3. We design a new batch update scheme based on update lock for RB-MAT, which 
eliminates the conflicts in updating and rebalancing adjacent branches of the tree. Our 
implementation fills in the blank of verifying multiple update at one time, reducing the 
communication and computational overhead for clients. 
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2. Related Work 
Different from traditional data centers, the cloud storage has unique advantages and brings in 
new challenges for data security and privacy. As A. Razaque et al. has studied in [1], in 
addition to the property of security and privacy-preserving, the efficiency and data dynamics 
are the most pressing concerns of cloud data stakeholders. 

On the basis of some preliminary works [2][3], Juels and Kaliski [4] propose the concept of 
“proof of retrievability” (POR), using spot-checking and error-correcting codes to find and fix 
the possible data damages. Particularly, the POR scheme precomputes some “sentinels” for 
error detection based on designated blocks randomly embedded in file, which, however, 
hamper the implementation of data dynamics. The following works [5][6][7][8][9][10][11] 
discuss the security and encoding performance of POR schemes, leaving the problem of data 
dynamics unsolved. Wang et al. [12] try to break this limitation and meanwhile keep the 
advantage of encoding-based data recovery. Nevertheless, they only realize a partial dynamic 
scheme which fails to support insertion. Recently, a few POR works such as [28][29][30] 
exploring some emerging fields has been proposed, applying new techniques.  

In the same year as [4], the first provable data possession (PDP) scheme is proposed by 
Ateniese et al. [13] to verify the data integrity of files on untrusted storages, providing solution 
in a different thought. They make use of RSA-based homomorphic tags, which contain the 
block indices to prevent replacement. Similar as the POR scheme, PDP also confronts with the 
problem of how to extend the scheme to the case of data dynamics. Thus Ateniese et al. [14] 
take the lead to propose a dynamic version of their prior work, which, however, also fails to 
support block insertion due to the problem of maintaining indices contained in hash values of 
tags.  

In order to overcome this difficulty, Zhu et al. [15] construct an index-hash table to support 
dynamic data operations in PDP scheme and extend the structure to multi-cloud scenario in 
[16]. The index-hash table is a linear linked record list using for querying and maintaining the 
indices of blocks, each record for a block. The inserted block is attached to the serial number 
of old blocks, distinguished by different version numbers. Following their work, Yang et al. 
[17] add time stamps to the records of index table in order to enhance the security. Jin et al. [18] 
apply a simplified version of index table called “index switcher”, to implement arbitration for 
dynamic cloud data auditing. Tian et al. [19] alter the index table to a two-dimension version to 
raise the efficiency of querying and maintaining the table. However, the efficiency of index 
table is still relatively low compared with tree structure. On the other hand, the schemes 
aforementioned only provide method to verify the correctness of block tags, without checking 
the index table itself. 

On the other hand, Erway et al. [20] propose a complete dynamic data possession auditing 
scheme, taking advantage of authentication skip list. Wang et al. [21] constructs their dynamic 
public auditing scheme based on the classical authentication structure Merkle Hash Tree 
(MHT), which supports auditing the correctness of update operations. To extend the 
application scenarios of MHT, Liu et al. [22] and Tang et al. [23] design auditing schemes 
specific to multiple replica and multiple clouds respectively. Meanwhile, the drawbacks of 
original MHT in [20] begins to draw attention of researchers. The most prominent problem is 
that it lacks an explicit query method for efficient querying leaf nodes and suffers from the 
problem of tree degeneration. Mo et al. [24] try to design a novel structure called Coordinate 
Merkle Hash Tree (CMHT) to implement a balanced MHT with the property of 
non-repudiation. To achieve this goal, they assign a coordinate c for each leaf node in CMHT 
to encode the path from the root to the leaf and keep the CMHT a complete binary tree at the 
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cost of the leaf nodes arranged out of order. However, the disordered leaf nodes make the 
querying and management a hard work. An extra index table should be constructed and 
maintained in both cloud side and client side simultaneously. Moreover, the deletion of 
CMHT needs a process of fixing the tree shape, which makes the scheme suffers from heavy 
extra overhead. In their another work [25], the typical self-balancing data structure B+ tree is 
combined with MHT to make use of the rebalancing operations merging and splitting. They 
also propose a different kind of balanced MHT originated from red-black tree [26], which is 
designed for key management. Generally speaking, the proposed balanced MHTs are still 
simple combination of MHT and traditional self-balancing tree structure, requiring further 
study. Besides, the state of the art remains blank in the aspect of enabling batch updating. 

3. Rank-Based Merkle AVL-Tree 
In order to prepare for our efficient provable data possession scheme, we introduce the new 
data structure as preliminary. 

3.1 Tree Construction 
Our Rank-Based Merkle AVL-Tree (RB-MAT) is a novel authenticated data structure with 
efficient query method, authentication of indices and adjustable balance factor, providing 
necessary support for batch updating. An instance of RB-MAT is shown in Fig. 1. The leaves 
of the tree are denoted as 𝑤1,𝑤2 , … ,𝑤𝑛  from left to right, each one representing a 
corresponding data block. Internal nodes are denoted by letter subscribes, such as 𝑤𝑎 and 𝑤𝑏. 
The characteristics of the tree are as following:  

For an arbitrary node 𝑤𝑥, a rank value 𝑟(𝑤𝑥) is assigned to it to denote the number of 
leaves in the subtree rooted at 𝑤𝑥. In other words, the rank value means the maximum number 
of leaves that can be reached from the current node. Apparently, the rank of a leaf node is 
always 1. Rank value is the basis of efficient query method of RB-MAT and also play a crucial 
part in ensuring the correctness of queried block indices. 

Different from the original Merkle Hash Tree, the hash value of each node 𝑤𝑥 in RB-MAT 
is defined as below, denoted as label 𝑙(𝑤𝑥),  

𝑙(𝑤𝑥) = �
𝐻(𝑚𝑥), if 𝑤𝑥  is a leaf node of 𝑚𝑥

𝐻 �𝑙�𝑤𝑙𝑒𝑓𝑡� ∥ 𝑙�𝑤𝑟𝑖𝑔ℎ𝑡� ∥ 𝑟(𝑤𝑥)� , if 𝑤𝑥  is an internal node
�                              (1) 

where 𝐻(⋅)  is a pre-defined cryptographic hash function. Obviously, the auxiliary 
authentication information (AAI) should be also altered to the format of tuple �𝑟(𝑤𝑥), 𝑙(𝑤𝑥)�. 
When checking the AAI, the rank values will be used to recompute the labels. Containing the 
rank in hash value is used for preventing the forgery of block indices, whose detailed 
discussion will be presented in section 3.2. 

Since the RB-MAT is constructed based on the AVL tree, there must be a height value h 
stored in every node, which is the maximum number of edges on the path from a node to the 
leaves of subtree rooted at it. Some AVL trees also maintain balance factor b in every node. It 
must be noted that since the balance factor of a node is the difference between the heights of its 
two children, we can choose to maintain only the height in the node, in order to reduce the size 
of RB-MAT. For clarity of presentation, we still display balance factors of every node in Fig. 
1.  

In order to prepare for the lock-based batch update scheme, we assigns 2 bits to each node 
to maintain the status value st. Each bit of st represents whether the node is locked by its left or 
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right child respectively. In the process of batch updating, the status value is used to indicate 
whether an internal node shared by multiple branches is ready to be updated. The details of 
status value used for batch updating will be presented in Section 4.3. 

Once the client constructs a RB-MAT, it will sign the root with its private key and send it 
as well as the whole tree to the cloud storage. Then the client can delete its local copy. 

 
Fig. 1. A typical RB-MAT 

3.2 Use of Rank 
Considering that rank is the number of leaves which can be reached from a node, it can reflect 
the shape of the tree. Taking this advantage, we will show how to use ranks to query the leaves 
of tree and ensure the correctness of the block indices in this part, as well as the advantage of 
updating ranks to maintain the block indices. Applying ranks in the case of batch query is also 
discussed. 

The process to query the ith leaf can be designed as follows: Initialize a temporary variable 
k and set its value to i. Take the root of RB-MAT as the start node. Denote 𝑟𝑙𝑒𝑓𝑡 and 𝑟𝑟𝑖𝑔ℎ𝑡 as 
the ranks of the children nodes. If k is larger than 𝑟𝑙𝑒𝑓𝑡, go to the right child and subtract 𝑟𝑙𝑒𝑓𝑡 
from k. Otherwise go to the left child and do nothing to k. Once reaching a new node, the cloud 
does the same thing as previous until the new node is a leaf node. If k=1, the node is the 
required one and all the siblings on the traversed path constitute the auxiliary authentication 
information (AAI) for leaf 𝑤𝑖. The cloud returns AAI and the signed root to the client as the 
proof for query. The complexity of rank-based query is O(log 𝑛). 

On the other hand, ranks ensure the correctness of the tree shape, which means the query 
result cannot be forged by replacing the requested node with another one. The client is able to 
verify the query proof as following: firstly, reconstruct the root label and compare it with the 
signed one; secondly, invert the process of query to check the correctness of index. If both the 
verifications are passed, output TRUE. Otherwise, output FALSE. The key point for 
preventing the forgery of replacing block is containing the ranks in the labels. Even if the 
cloud has the ability to tamper the ranks to pass the verification of index, the check of root 
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label is sure to fail because the false ranks will be used to recomputed the labels, which 
certainly leads to an inconsistent result. 

In dynamic scenarios, the usage of ranks is efficient to maintain the indices for leaves. 
When we insert a leaf 𝑤∗ in RB-MAT, the ranks of nodes on the path to root will be increased 
by one, which automatically increases the indices of all the leaves on the right of 𝑤∗ by one. 
And it is also true another way around. The complexity of maintaining ranks is O(log 𝑛). In 
the case without ranks, however, the overhead of maintaining an index table and modifying the 
indices in sequence is O(𝑛), much higher than using ranks. 

In the case of batch update, using ranks has special advantages in querying and maintaining 
indices. When the client wants to query m leaf nodes to the CSP, all the indices of required 
leaves should be sorted in ascending order as a query set 𝑄 = {𝑖1, 𝑖2, … , 𝑖𝑚}. The batch query 
method is slightly different to that of the single case. Once reaching a node, the rank value of 
its left child 𝑟𝑙𝑒𝑓𝑡 is compared with the indices in query set Q which will be divided into two 
subsets, 𝑄1 = �𝑖𝑘|𝑖𝑘 ≤ 𝑟𝑙𝑒𝑓𝑡 , 𝑖𝑘 ∈ 𝑄� and 𝑄2 = �𝑖𝑘|𝑖𝑘 > 𝑟𝑙𝑒𝑓𝑡 , 𝑖𝑘 ∈ 𝑄�. The indices in 𝑄1 will 
go to the left child, while the others go to the right one. When 𝑄1 and 𝑄2 reach their new nodes, 
they will also be divided and the subsets will be directed to different branches. All the 
processes on multiple branches can be executed concurrently to raise the query efficiency. 
Finally, after several times of division and direction, all the query processes will find their 
corresponding leaf nodes on different branches of the tree. On the other hand, considering that 
using ranks to maintain index for a leaf only involves its ancestor nodes, processes on different 
branches of tree only need to increase or decrease the ranks of nodes in their paths by 1, which 
are independent to each other and easy to be executed concurrently. By contrast, updating an 
index in linear table must consider whether there are blocks in prior position inserted or 
deleted, which is the bottleneck to raise its batch processing efficiency. 

3.3 Relaxed Balance 
As mentioned before, we borrow the definitions of height and balance factor from AVL tree. 
The balance factor of a node describes the degree of imbalance for the node. In a strictly 
balanced tree, the value range of balance factor should only be [-1,1], which is the balance 
criterion of the original AVL tree. 

If the imbalance criterion is changed from [-1,1] to [-δ,δ](δ>1), we can obtain a generalized 
AVL tree [27] with the relaxed balance. Relaxed balance is different from the approximate 
balance such as Red-Black tree, because RB-MAT will be strictly balanced again after the 
rebalancing operation. That is to say, relaxed balance means that the RB-MAT is allowed to 
postpone the process of rebalancing until the imbalance accumulates to a certain degree. The 
main motivation for relaxed balance is to decrease the frequency of rebalancing operations. 
Taking the extra computation and communication for rebalancing into account, lower 
frequency can decrease the amortizing overhead of maintaining RB-MAT.  

A typical rebalancing method in AVL tree is rotation. It appeared very early and is easy to 
understand. However, when extended to relaxed balance, the rotation-based method become 
too complicated because all the different patterns of tree shape have to be analyzed 
respectively and the complexity will explode in exponential growth. We choose another 
rebalancing method based on adjustment which is more suitable to rebalance the node with 
accumulated imbalance. The adjustment-based method will be introduced in next section. 
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4. Efficient Data Possession Verification Scheme 
In this section, we will show how to enable our efficient dynamic data possession verification 
scheme to achieve the aforementioned design issues, with the help of RB-MAT. Except the 
necessary Setup and Default Verification phase, we focus on the efficient data dynamics 
scheme, starting with the single update case then presenting the implementation of batch 
update support.  

4.1 Setup 
The client invokes KeyGen to generate its public and private keys, then preprocesses the file 
and constructs RB-MAT by running SigGen before outsourcing data to the cloud. 

𝐾𝑒𝑦𝐺𝑒𝑛�1𝑘� → (𝑝𝑘, 𝑠𝑘). For a bilinear map 𝔾1 ×𝔾2 → 𝔾𝑇, the client chooses 𝑥 ← ℤ𝑝, a 
random element 𝑢 ← 𝔾1 and the generator 𝑔 of 𝔾2. Then the client computes 𝑣 ← 𝑔𝑥 . So the 
private key is 𝑠𝑘 = (𝑥) and the public one is 𝑝𝑘 = (𝑢,𝑔, 𝑣). 

𝑆𝑖𝑔𝐺𝑒𝑛(𝑠𝑘,𝐹) → �Φ,𝑇, 𝑠𝑖𝑔𝑠𝑘�𝑙(𝑤𝑅)��. The client firstly divides the file 𝐹 into 𝑛 blocks 
{𝑚1,𝑚2, … ,𝑚𝑛}, and then computes tag for each block 𝑚𝑖 as 𝜎𝑖 ← (𝐻(𝑚𝑖) ⋅ 𝑢𝑚𝑖)𝑥 . The set 
of tags is denoted as Φ. The client also constructs a RB-MAT 𝑇 for the blocks. The root label 
of the tree is signed with the private key as 𝑠𝑖𝑔𝑠𝑘�𝑙(𝑤𝑅)� ← �𝑙(𝑤𝑅)�𝑥 . At last, 
�𝐹,Φ,𝑇, 𝑠𝑖𝑔𝑠𝑘�𝑙(𝑤𝑅)�� is sent to the cloud and deleted from the client’s local storage. 

4.2 Default Verification 
With the algorithms GenChal, GenProof and VerifyProof, the integrity of outsourced file can 
be checked by challenging the cloud. In response to the request, a proof will be generated by 
the cloud to prove the data possession. RB-MAT has the ability to ensure that the returned 
proof includes the correct challenged blocks. Our scheme is able to support both public and 
private auditing. Since the public auditability is not the core issue of this paper, here we call 
the client or TPA collectively the “verifier”. 

𝐺𝑒𝑛𝐶ℎ𝑎𝑙(𝑛) → 𝑐ℎ𝑎𝑙. The verifier picks a c-element subset 𝐼 = {𝑖1, 𝑖2, … , 𝑖𝑐} of set [1,𝑛]. 
For each 𝑖 ∈ 𝐼 , it chooses a random element 𝜆𝑖 ← ℤ𝑝  to construct the challenge 𝑐ℎ𝑎𝑙 =
{(𝑖, 𝜆𝑖)}𝑖∈𝐼. The challenge is sent to the cloud to launch the integrity verification. 

𝐺𝑒𝑛𝑃𝑟𝑜𝑜𝑓(𝐹,Φ, 𝑐ℎ𝑎𝑙) → 𝑃 . Once receiving the challenge, the cloud constructs its 
possession proof as follows: it firstly queries the leaves {𝑤𝑖}𝑖∈𝐼  as well as auxiliary 
authentication information (AAI) {Ω𝑖}𝑖∈𝐼  corresponding to the challenged blocks in the 
RB-MAT, using the efficient method in section 3.2. Then it computes 𝜇 = ∑ 𝜆𝑖𝑚𝑖𝑖∈𝐼 ,𝜎 =
∏ 𝜎𝑖

𝜆𝑖
𝑖∈𝐼 . The signed root label 𝑠𝑖𝑔𝑠𝑘�𝑙(𝑤𝑅)� is also appended. The cloud sends the proof 

𝑃 = �𝜇,𝜎, {𝑤𝑖 ,Ω𝑖}, 𝑠𝑖𝑔𝑠𝑘�𝑙(𝑤𝑅)�� to the verifier. 
𝑉𝑒𝑟𝑖𝑓𝑦𝑃𝑟𝑜𝑜𝑓(𝑝𝑘, 𝑐ℎ𝑎𝑙,𝑃) → (𝑇𝑅𝑈𝐸,𝐹𝐴𝐿𝑆𝐸). First, the verifier checks the integrity and 

correctness of {𝑤𝑖 ,Ω𝑖} by using the method in section 3.2. It re-computes the root label 𝑙(𝑤𝑅) 
and checks 𝑒�𝑠𝑖𝑔𝑠𝑘�𝑙(𝑤𝑅)�,𝑔� = 𝑒(𝑙(𝑤𝑅), 𝑣). Also, the verifier confirms the correctness of 
indices using ranks, preventing the attack of replacing the returned blocks with other ones, 
which threatens the security of the original MHT-based scheme. If success, the verifier 
continues to check 𝑒(𝜎,𝑔) = 𝑒 �∏ �𝑙(𝑤𝑖)�

𝜆𝑖 ⋅ 𝑢𝜇𝑖∈𝐼 , 𝑣�  and returns 𝑇𝑅𝑈𝐸  or 𝐹𝐴𝐿𝑆𝐸 
according to the verification result. 
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4.2 Data Updating with Rebalancing Operations 
 
In this part we will show how our scheme effectively fixes the imbalance of RB-MAT caused 
by block insertion or deletion, especially the case of relaxed balance. During the updating 
process, the client invokes UpdateRequest to generate request for asking the cloud to perform 
data dynamics. The cloud runs ExecuteUpdate to update the file with the RB-MAT, involving 
possible rebalancing operations. Finally, the client uses VerifyUpdate to check whether the 
update is executed correctly. Note that the case we discuss here is single updating, preparing 
for the batch operation introduced in the next part. 

𝑈𝑝𝑑𝑎𝑡𝑒𝑅𝑒𝑞𝑢𝑒𝑠𝑡() → 𝑟𝑒𝑞𝑢𝑒𝑠𝑡. When the client wants to update a certain block 𝑚𝑖, it 
sends a request to the cloud. In the case of insertion or modification, the client computes hash 
value and tag for the new block and generates request as (𝑖𝑛𝑠𝑒𝑟𝑡, 𝑖,𝑚∗,𝜎∗)  or 
(𝑚𝑜𝑑𝑖𝑓𝑦, 𝑖,𝑚𝑖

′,𝜎𝑖′), preserving the hash value for verification. The request for deletion is 
simply (𝑑𝑒𝑙𝑒𝑡𝑒, 𝑖) which does not need preprocessing and additional information. Then the 
update request is sent to the cloud. 

𝐸𝑥𝑒𝑐𝑢𝑡𝑒𝑈𝑝𝑑𝑎𝑡𝑒(𝐹,Φ,𝑇, 𝑟𝑒𝑞𝑢𝑒𝑠𝑡) → 𝑃𝑢. Once receiving the request, the cloud starts with 
querying the leaf 𝑤𝑖 and AAI Ω𝑖 following the method in section 3.2, and reserve the result for 
generating proof later. Once finding the required position, the cloud executes updating 
operation in the same way as original MHT-based scheme [21]. Then along the path from the 
required position to the root, every traversed node will be checked whether it needs to be 
rebalanced before recomputing its rank and hash value. One of the most significant differences 
of our scheme from previous works is that the cloud fixes the imbalanced node using the 
adjustment-based method to support relaxed balance, which has been mentioned in section 
3.3.  

The principle of this method is shown in Fig. 2. For simplicity, we only present the tree 
structure in the figure, without data stored in nodes. The internal nodes are denoted as circles 
while the leaves are represented by solid rectangles. Taking a RB-MAT with relaxed balance 
δ = 3 for instance, when node 𝑤𝑅 is imbalanced, we first find out all its subtrees which will be 
the minimum units to constitute the balanced tree. Comparing the children of 𝑤𝑅, the right one 
has the lower height, whose subtree is 𝑠6, circled by dashed rectangle in Fig. 2. Then we 
search the branch from the other child to find all the remaining subtrees with the same height 
as 𝑠6, which are 𝑠1, 𝑠2, … , 𝑠5. The root node of every such subtree is denoted as a concentric 
circle in the figure, to be distinguished from other internal nodes. Such a search process can be 
easily implemented by preorder traversal and the permutation of result will not change the 
original order of those subtrees. Finally, all the subtrees are reorganized into a complete binary 
tree, which is balanced and filled from left to right. Obviously, the adjustment-based 
rebalancing method can also adapt to the case with strict balance. 
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Fig. 2. Adjustment of Tree with Relaxed Balance 

 

Once a node on the path is balanced, its labels and ranks will be consequently updated. This 
process continues until the root is updated to 𝑤𝑅′ . At last, a proof for update as well as possible 
rebalancing is generated as 𝑃𝑢 = �{𝑤𝑖 ,Ω𝑖},𝑤𝑅′ , 𝑠𝑖𝑔𝑠𝑘�𝑙(𝑤𝑅)��  and sent to the client. The 
algorithm of ExecuteUpdate  is shown in Algorithm 1. 

 

Algorithm 1.  ExecuteUpdate 
Algorithm 𝐸𝑥𝑒𝑐𝑢𝑡𝑒𝑈𝑝𝑑𝑎𝑡𝑒(𝐹,Φ,𝑇, 𝑟𝑒𝑞𝑢𝑒𝑠𝑡) → 𝑃𝑢 
1. 𝑤𝑖 ,Ω𝑖 ← 𝑄𝑢𝑒𝑟𝑦(𝑇, 𝑖) 
2. Perform the update of block at 𝑤𝑖 
3. 𝑤 ← 𝑢𝑝𝑑𝑎𝑡𝑒𝑑 𝑛𝑜𝑑𝑒 
4. while (𝑤 is not the new root 𝑤𝑅

′ ) 
5.     update ℎ(𝑤) 
6.     𝑏(𝑤) ← ℎ(𝑤. 𝑙𝑒𝑓𝑡𝑐ℎ𝑖𝑙𝑑)− ℎ(𝑤. 𝑟𝑖𝑔ℎ𝑡𝑐ℎ𝑖𝑙𝑑) 
7.     if (|𝑏(𝑤)| > 𝛿)  //Adjustment-based rebalancing 
8.        𝑟𝑒𝑂𝑟𝑔 ← ∅ 
9.        Add the child with lower height 𝑐ℎ0 to 𝑟𝑒𝑂𝑟𝑔 
10.        ℎ0 ←height of 𝑐ℎ0 
11.        𝑐ℎ1 ←the sibling of 𝑐ℎ0 
12.        define function 𝑆𝑒𝑎𝑟𝑐ℎ𝑆𝑢𝑏𝑡𝑟𝑒𝑒(𝑐ℎ,ℎ, 𝑠𝑒𝑡) 
13.            if (𝑐ℎ.ℎ𝑒𝑖𝑔ℎ𝑡 == ℎ) 
14.                Add 𝑐ℎ to 𝑠𝑒𝑡 
15.            else 
16.                𝑆𝑒𝑎𝑟𝑐ℎ𝑆𝑢𝑏𝑡𝑟𝑒𝑒(𝑐ℎ. 𝑙𝑒𝑓𝑡𝑐ℎ𝑖𝑙𝑑, ℎ, 𝑠𝑒𝑡) 
17.                𝑆𝑒𝑎𝑟𝑐ℎ𝑆𝑢𝑏𝑡𝑟𝑒𝑒(𝑐ℎ. 𝑟𝑖𝑔ℎ𝑡𝑐ℎ𝑖𝑙𝑑,ℎ, 𝑠𝑒𝑡) 
18.            end 
19.        end 
20.        𝑆𝑒𝑎𝑟𝑐ℎ𝑆𝑢𝑏𝑡𝑟𝑒𝑒(𝑐ℎ1,ℎ0 , 𝑟𝑒𝑂𝑟𝑔) 
21.        Reorganize nodes in 𝑟𝑒𝑂𝑟𝑔 
22.        𝑤 ←root of the reorganized subtree 
23.     end 
24.     update 𝑟(𝑤) and 𝑙(𝑤) 
25.     𝑤 ← 𝑤. 𝑝𝑎𝑟𝑒𝑛𝑡 
26. end 
27. 𝑃𝑢 = �{𝑤𝑖 ,Ω𝑖},𝑤𝑅

′ ,𝑠𝑖𝑔𝑠𝑘�𝑙(𝑤𝑅)�� 
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𝑉𝑒𝑟𝑖𝑓𝑦𝑈𝑝𝑑𝑎𝑡𝑒(𝑃𝑢) → (𝑇𝑅𝑈𝐸,𝐹𝐴𝐿𝑆𝐸). The client verifies the correctness of update by 

checking 𝑃𝑢 using the algorithm in Algorithm 2. Once receiving the proof, the client firstly 
verifies 𝑤𝑖 and Ω𝑖 to make sure whether the update is executed at the correct position. If the 
proof passes the first step, the client continues to check whether the cloud performs update 
correctly by computing the new root 𝑤𝑅𝑛𝑒𝑤 . In this process, necessary rebalancing operations 
will be performed using the tree reconstructed from 𝑤𝑖 and Ω𝑖. The client manipulates this 
process following the same adjustment-based method as the cloud does. Finally, 𝑤𝑅𝑛𝑒𝑤  is 
compared with 𝑤𝑅′ . The algorithm returns 𝑇𝑅𝑈𝐸  or 𝐹𝐴𝐿𝑆𝐸  according to the verification 
result. 

 
Algorithm 2. VerifyUpdate 

 

Algorithm 𝑉𝑒𝑟𝑖𝑓𝑦𝑈𝑝𝑑𝑎𝑡𝑒(𝑃𝑢) → (𝑇𝑅𝑈𝐸,𝐹𝐴𝐿𝑆𝐸) 
1. 𝑤 ← 𝑤𝑖 ,𝑠 ← 0 
2. for every 𝑤𝑥 in Ω𝑖 
3.     reconstruct the parent 𝑤𝑝𝑎𝑟𝑒𝑛𝑡 of 𝑤 and 𝑤𝑥 
4.     if (𝑤𝑥 is the left child of its parent) 
5.         𝑠 ← 𝑠 + 𝑟(𝑤𝑥) 
6.     end 
7.     𝑤 ← 𝑤𝑝𝑎𝑟𝑒𝑛𝑡  
8. end 
9. if (𝑒�𝑠𝑖𝑔𝑠𝑘�𝑙(𝑤𝑅)�,𝑔� ≠ 𝑒(𝑙(𝑤),𝑣) 𝑜𝑟 𝑠 ≠ 𝑖 − 1) 
10.     output 𝐹𝐴𝐿𝑆𝐸 and return 
11. end 
12. perform the update of block with the reconstructed tree. 
13. 𝑤 ← 𝑢𝑝𝑑𝑎𝑡𝑒𝑑 𝑛𝑜𝑑𝑒 
14. while (𝑤 is not the new root 𝑤𝑅𝑛𝑒𝑤) 
15.     update ℎ(𝑤) and 𝑏(𝑤) 
16.     if (|𝑏(𝑤)| > 1) 
17.        adjust 𝑤 
18.     end 
19.     update 𝑟(𝑤) and 𝑙(𝑤) 
20.     𝑤 ←parent of 𝑤 
21. end 
22. if (𝑤𝑅𝑛𝑒𝑤 ≠ 𝑤𝑅′ ) 
23.     output 𝐹𝐴𝐿𝑆𝐸 and return 
24. else 
25.     output 𝑇𝑅𝑈𝐸 and sign 𝑤𝑅

′  
26. end 
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4.3 Batch Updating 
 
Now we are going to present the implementation of support to batch updating in detail, making 
use of the properties of RB-MAT to construct our novel lock-based method. Similar to single 
update case, batch update scheme also consists of three algorithms: BatchUpdateRequest, 
ExecuteBatchUpdate and VerifyBatchUpdate. In the following discussion, we will focus on 
how to solve the difficulties lying in the unique scenario of updating multiple data blocks at the 
same time. 
 

𝐵𝑎𝑡𝑐ℎ𝑈𝑝𝑑𝑎𝑡𝑒𝑅𝑒𝑞𝑢𝑒𝑠𝑡() → 𝑏𝑎𝑡𝑐ℎ𝑟𝑒𝑞. When the client wants to update m blocks at one time, 
it firstly generates a series of single update requests following the same method as 
UpdateRequest. For the convenience of applying batch querying method, these requests will 
be arranged according to their indices of updated positions in ascending order, then packed 
into 𝑏𝑎𝑡𝑐ℎ𝑟𝑒𝑞 = �𝑟𝑒𝑞𝑢𝑒𝑠𝑡𝑗 , 𝑗 = 1, … ,𝑚�. 

𝐸𝑥𝑒𝑐𝑢𝑡𝑒𝐵𝑎𝑡𝑐ℎ𝑈𝑝𝑑𝑎𝑡𝑒(𝐹,Φ,𝑇, 𝑏𝑎𝑡𝑐ℎ𝑟𝑒𝑞) → 𝑃𝑏𝑢. Once receiving the batch update request, 
the cloud invokes this algorithm to launch the process. An instance for lock-based batch 
updating is presented in Fig. 3, which demonstrates the process of deleting the 2nd block, 
modifying the 3rd block and inserting a block behind the 5th position at the meantime.  

As in the single case, batch updating starts with querying the nodes to be handled. 
Revisiting the batch query method introduced section 3.2, in order to apply the lock-based 
method, we need to lock all the nodes on the path from the root to the queried leaves, for 
example, 𝑤𝑅 ,𝑤𝑎 ,𝑤𝑏 and 𝑤𝑐 in Fig. 3. To “lock” a node means modifying its status value. For 
a locked node, if there is a path leading to its left child, the higher bit of status value should be 
set to 1, while the lower bit will be set to 1 in the case of a path to the right child. Particularly, 
if a node is shared by two different paths (its left and right children), there should be 
double-lock, just as 𝑤𝑎. Then at every queried leaf node, update operations are respectively 
executed in the same way as the single case. However, what is different is that when updating 
the nodes on the path from the leaf node to the root, once reaching a node, before updating and 
rebalancing, the update process firstly unlocks the lock by modifying the corresponding bit in 
status value to 0. If there is no remained lock for the node, then the updating can be continued. 
Otherwise, it should be terminated. The node will wait for process from another child to 
unlock and continue the update. The lock, especially double-lock, avoids that the nodes shared 
by different query path for different update to be updated repeatedly. Fig. 3 shows unlocking 
in three processes. For better presentation of double-lock unlocking, these operations are 
displayed one by one in the figure. In practice, they can be run at the same time, involving 
concurrent processing. The update lock can be used to prevent chaos in concurrent update. 
Finally, a proof for batch update 𝑃𝑏𝑢 = ��𝑤𝑗 ,Ω𝑗�,𝑤𝑅′ , 𝑠𝑖𝑔𝑠𝑘�𝑙(𝑤𝑅)�� is sent to the client. The 
algorithm of ExecuteBatchUpdate is shown in Algorithm 3. 
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Fig. 3. Batch Update with Lock 

 
𝑉𝑒𝑟𝑖𝑓𝑦𝐵𝑎𝑡𝑐ℎ𝑈𝑝𝑑𝑎𝑡𝑒(𝑃𝑏𝑢) → (𝑇𝑅𝑈𝐸,𝐹𝐴𝐿𝑆𝐸). The verification of batch update is almost the 

same as single update. The only difference is that the client should reconstruct the RB-MAT following 
the same method in ExecuteBatchUpdate. 
 

Algorithm 3. ExecuteBatchUpdate 
Algorithm 𝐸𝑥𝑒𝑐𝑢𝑡𝑒𝐵𝑎𝑡𝑐ℎ𝑈𝑝𝑑𝑎𝑡𝑒(𝐹,Φ,𝑇,𝑏𝑎𝑡𝑐ℎ𝑟𝑒𝑞) → 𝑃𝑏𝑢 
1. 𝑞𝑢𝑒𝑟𝑦𝑠𝑒𝑡 ← �𝑖𝑗 = 𝑟𝑒𝑞𝑢𝑒𝑠𝑡𝑗 . 𝑖� 
2. define function 𝐵𝑎𝑡𝑐ℎ𝑄𝑢𝑒𝑟𝑦(𝑤, 𝑠𝑒𝑡, 𝑟𝑒𝑠𝑢𝑙𝑡) 
3.     if (there is only one element 𝑖 in 𝑠𝑒𝑡) 
4.         if (𝑤. 𝑟𝑎𝑛𝑘 == 1 & 𝑖 == 1) 
5.             Add 𝑤 and its AAI to 𝑟𝑒𝑠𝑢𝑙𝑡 
6.         end 
7.     else 
8.         𝑟𝑙𝑒𝑓𝑡 ← 𝑟(𝑤. 𝑙𝑒𝑓𝑡𝑐ℎ𝑖𝑙𝑑) 
9.         𝑙𝑠𝑒𝑡 ← �𝑖|𝑖 ≤ 𝑟𝑙𝑒𝑓𝑡 , 𝑖 ∈ 𝑠𝑒𝑡� 
10.         𝑟𝑠𝑒𝑡 ← �𝑖 − 𝑟𝑙𝑒𝑓𝑡|𝑖 > 𝑟𝑙𝑒𝑓𝑡 , 𝑖 ∈ 𝑠𝑒𝑡� 
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11.         if (𝑙𝑠𝑒𝑡 ≠ ∅) 
12.             set the higher bit of 𝑤. 𝑠𝑡 to 1 
13.             𝐵𝑎𝑡𝑐ℎ𝑄𝑢𝑒𝑟𝑦(𝑤. 𝑙𝑒𝑓𝑡𝑐ℎ𝑖𝑙𝑑, 𝑙𝑠𝑒𝑡, 𝑟𝑒𝑠𝑢𝑙𝑡) 
14.         end 
15.         if (𝑟𝑠𝑒𝑡 ≠ ∅) 
16.             set the lower bit of 𝑤. 𝑠𝑡 to 1 
17.             𝐵𝑎𝑡𝑐ℎ𝑄𝑢𝑒𝑟𝑦(𝑤. 𝑟𝑖𝑔ℎ𝑡𝑐ℎ𝑖𝑙𝑑, 𝑟𝑠𝑒𝑡, 𝑟𝑒𝑠𝑢𝑙𝑡) 
18.         end 
19.     end 
20. end 
21. 𝑟𝑒𝑠𝑢𝑙𝑡 ← ∅ 
22. 𝐵𝑎𝑡𝑐ℎ𝑄𝑢𝑒𝑟𝑦(𝑇. 𝑟𝑜𝑜𝑡,𝑞𝑢𝑒𝑟𝑦𝑠𝑒𝑡, 𝑟𝑒𝑠𝑢𝑙𝑡) 
23. for each 𝑙𝑒𝑎𝑓𝑗  in 𝑟𝑒𝑠𝑢𝑙𝑡 
24.     perform update operation required by 𝑟𝑒𝑞𝑢𝑒𝑠𝑡𝑗 in 𝑏𝑎𝑡𝑐ℎ𝑟𝑒𝑞 
25.     𝑤 ← 𝑙𝑒𝑎𝑓𝑗 
26.     while (𝑤 is not the new root 𝑤𝑅

′ ) 
27.         set the corresponding bit of 𝑤. 𝑠𝑡 to 0 
28.         if (𝑤. 𝑠𝑡 ≠ ′00′) 
29.             break 
30.         end 
31.         updating and rebalancing 𝑤 
32.         𝑤 ← 𝑤.𝑝𝑎𝑟𝑒𝑛𝑡 
33.     end 
34. end 
35. 𝑃𝑏𝑢 = ��𝑤𝑗,Ω𝑗�,𝑤𝑅

′ , 𝑠𝑖𝑔𝑠𝑘�𝑙(𝑤𝑅)�� 

5. Security Analysis 
Theorem 1: If there exists a collision-resistant hash function which is used in the construction 
of RB-MAT, then the proposed verification scheme for data dynamics is secure. 
Proof: The theorem will be proved in two steps: First, we show that the received auxiliary 
authentication information from the cloud including ranks of nodes is correct since the 
probability for the cloud to forge hash values of nodes on RB-MAT to pass the verification is 
negligibly small. Second, data dynamics could be verified by checking the root of RB-MAT.  

The auxiliary authentication information returned from the cloud mainly consists of two 
parts: the labels and ranks of node siblings on the path from the leaf 𝑤𝑖 to the root. According 
to our scheme, once the block corresponding to 𝑤𝑖 is updated, the client receives the auxiliary 
authentication information as well as the old signed root of the RB-MAT. It reconstructs nodes 
on the path from 𝑤𝑖 to the root of RB-MAT in local based on the labels and ranks of nodes 
received. If the cloud tampers either the returned ranks or labels, the root label computed with 
them will be incorrect due to the collision-resistant property of hash function. So once the 
verification of the signed root is passed, both the labels and ranks received must be authentic. 
Therefore, the difficulty of the cloud to provide false auxiliary authentication information 
without being detected is the same as breaking the security of the hash function used in 
RB-MAT.  

The shape of a RB-MAT is maintained by the cloud. Once RB-MAT is imbalanced, the 
cloud rebalances it by adjusting nodes in the path from the updated leaf node to the root. Then 
the root is computed and sent to the client. At the same time, the client adjusts the shape of 
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RB-MAT locally. The cloud and the client will maintain the same shape of RB-MAT which is 
determined by the same rebalancing algorithm. Since the correctness of nodal information as 
well as the shape of RB-MAT before rotation is proved previously, the probability of a forge 
root generated by the cloud to pass the verification of clients is negligibly small. 

6. Evaluation 
To demonstrate the efficiency of our scheme, we conduct experiments using C++ on a system 
with Intel Core i5-4590 CPU @ 3.30GHz, 8GB RAM and a 1TB hard drive. Algorithms are 
implemented with the help of using the Pairing-Based Cryptography (PBC) library version 
0.5.14 and the crypto library of OpenSSL version 1.0.2h. In this section, we compare the 
efficiency of our rank-based query method to that of the linear index table. The performance of 
our RB-MAT in basic data updating operations is also tested. We vary the balance criterion δ  
to different values and compare the average overhead of updating under relaxed balance. 
Finally, we conduct experiments to see the improvement by our batch updating scheme in 
contrast to the traditional single method. 
 

 
Fig. 4. Comparison of rank-based query and linear index table 

 
First of all, we compare our rank-based query method to the one with linear index table. 

The total number of blocks used in the experiment varies from 103 to 107, which means the 
scale of RB-MAT and index table to be constructed. For each kind of scale, we randomly 
choose 1000 blocks to query using both of these two methods respectively. The average time 
of querying one block is shown in Fig. 4. For better presentation, both the X and Y axes are 
drawn in logarithmic coordinates. No matter which kind of method, the average time increase 
along with the total number of data blocks, because both the depth of RB-MAT and the length 
of linear index table are growing. However, the rank-based query method shows significant 
advantage that its speed of growth is much lower than that of linear structure. In theory, the 
complexity of rank-based query is 𝑂(log 𝑛), in contrast to 𝑂(𝑛) of index table. In fact, when 
the total number of blocks increases up to 107, the average time of query a block using index 
table exceeds 105 times as long as that of rank-based method. 
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Fig. 5. Comparison of batch and single query 

 
 

We also compare our batch query method to the single one in the case of searching 
multiple blocks. Here we fix the total number of blocks to 106 and change the number of 
required blocks from 100 to 104. We query all the randomly selected blocks at one time via the 
batch method, then repeatedly invoke the single query to complete the same task. The query 
time for both these two methods is presented in Fig. 5, where Y axis is drawn as logarithmic 
coordinate. The result indicates that in the case of searching multiple blocks, the query time of 
using batch method is obviously lower than that of repeatedly conducting single query. Even 
though 104 blocks are only 1% of the total data, batch querying can save nearly 2/3 of the 
query time than before. The main reason for this phenomenon is due to that batch query 
reduces repeated visiting to nodes in the first few levels of RB-MAT. Considering the case of 
integrity verification which needs frequent querying large amount of blocks, batch query will 
undoubtedly play an efficient role in such applications. 

The efficiency of basic updating operations in our scheme is compared with the ones using 
basic MHT, CMHT and B+ MHT. Here we set the balance criterion δ = 1, which means the 
strict balance. We segment a file into 106 blocks and update these blocks for 105 times, each 
time one block, randomly choosing insertion, deletion or modification. The experimental 
results are shown in Fig. 6. The average computational and communication overheads of our 
scheme and the B+ MHT one are significantly lower than the other two schemes. The original 
MHT suffers from the imbalance problem while the low efficiency of CMHT is due to its 
heavy computational and communication overhead in deletion case. It should be noted that the 
overhead of B+ MHT is very similar to the RB-MAT with δ = 1 because they are both strictly 
balanced tree structure. However, along with relaxing the balance criterion, RB-MAT shows 
more advantages due to the decrease of rebalancing frequency, which we will analyze in next 
part. 
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(a) Computational overhead                              (b) Communication overhead 

 

Fig. 6. Comparing the overhead of basic updating in different schemes 
 

To evaluate the influence of relaxed balance, we vary the balance criterion from 1 to 20. In 
every case, we also perform random data updating operations as before and compare their 
average computational and communication overhead. In Fig. 7, we can easily find that the best 
performance appears in the range of δ ∈ [3,5]. Actually, the average ratio of rebalancing 
occurrence in updating processes under δ = 1 is up to 34.58%, and fall rapidly to only 3.24% 
when δ = 3. When δ > 13, the rebalancing ratio is even less than 0.1%. However, larger δ 
does not mean definitely lower overhead. Along with the accumulation of imbalance, the 
number of nodes involved in rebalancing will also grow rapidly, leading to more computation 
and communication. That is the reason why the average overhead increases when δ > 5. 

 

 
(a) Computational overhead                              (b) Communication overhead 

 

Fig. 7. The overhead of data updating under different balance criterion 
 

We also show the improvement in computational and communication overhead for update 
verification made by the batch update. We divide the file into 106 blocks and choose different 
numbers of them to be updated, ranging from 100  to 104 . Since relaxed balance is not 
concerned in this part, the balance criterion of RB-MAT is set to δ = 1. The experimental 
result is shown in Fig. 8 and logarithmic coordinate is used for Y axis. As the number of 
updated blocks growing, the improvement by our batch update scheme becomes more 
significant. In the case of updating 104 blocks, the batch updating method reduces about 65% 
overhead of the single one. One reason for this phenomenon is that the more blocks are 
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updated, the more shared nodes avoid to be repeatedly updated. In addition, rebalancing in 
batch update reduces some unnecessary rebalancing operations, which also contributes to the 
increase of efficiency. 

 

 
(a) Computational overhead                              (b) Communication overhead 

 

Fig. 8. The overhead improvement for update verification by batch update 

7. Conclusion 
In this paper, we study how to raise efficiency for the existing dynamic provable data 
possession schemes. To solve their problems, we optimize the query and rebalancing method 
in data dynamics scheme, and fill in the blank of batch updating scheme. In order to achieve 
these targets, we propose a novel data structure named Rank-Based Merkle AVL Tree which 
make use of ranks to describe the block indices and has update locks designed for processing 
in multiple branches. Our scheme is compared with previous work through experiments and 
the result shows that the proposed scheme has better performance. In future work, we will try 
to find out how to determine the best relaxed balance criterion for RB-MAT. 
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