DOI QR코드

DOI QR Code

A Review of Scientific Evidence on Indoor Air of School Building: Pollutants, Sources, Health Effects and Management

  • Chithra, V.S (Department of Civil Engineering, Environmental and Water Resources Engineering Division, Indian Institute of Technology Madras) ;
  • Shiva, Nagendra S.M (Department of Civil Engineering, Environmental and Water Resources Engineering Division, Indian Institute of Technology Madras)
  • 투고 : 2017.09.09
  • 심사 : 2018.02.14
  • 발행 : 2018.06.30

초록

Schools are one of the critical social infrastructures in a society, the first place for social activity and the most important indoor environment for children besides the home. Poor IAQ in classrooms can increase the chance of long-term and short-term health problems for students and staffs; affects productivity of teachers; and degrade the student learning environment and comfort levels. The primary objective of this paper is to review and summarize available scientific evidence on indoor air quality of schools and related health effects in children. It was found that the indoor air pollutant levels in school buildings varied over a wide range in different parts of the world depending on site characteristics, climatic conditions, outdoor pollution levels, occupant activities, ventilation type and building practices. Among the indoor air pollutants, particulate matter concentrations were found to be very high in many schools. Outdoor pollutant sources also play a major role in affecting the IAQ of the school building. Hence, scientific knowledge on sources of indoor pollutants, quantification of emissions, temporal and spatial dispersion of pollutants, toxicological properties, chemical and morphological characteristics of the pollutants and associated health risk among children in the school buildings are essential to evaluate the adequacy and cost effectiveness of control strategies for mitigating the IAQ issues.

키워드

참고문헌

  1. Abt, E., Suh, H.H., Catalano, P., Koutrakis, P. (2000) Relative contribution of outdoor and indoor particle sources to indoor concentrations. Environmental Science & Technology 34(17), 3579-3587. https://doi.org/10.1021/es990348y
  2. ACGIH (1999) Bioaerosols: Assessment and Control. (1st Ed.), Cincinnati, OH: American Conference of Governmental Industrial Hygienists.
  3. Agarwal, N., Nagendra, S.S. (2016) Modelling of particulate matters distribution inside the multilevel urban classrooms in tropical climate for exposure assessment. Building and Environment 102, 73-82. https://doi.org/10.1016/j.buildenv.2016.03.015
  4. Almeida, S.M., Canha, N., Silva, A., Freitas, M.D.C., Pegas, P., Alves, C., Evtyugina, M., Pio, C.A. (2011) Children exposure to atmospheric particles in indoor of Lisbon primary schools. Atmospheric Environment 45(40), 7594-7599. https://doi.org/10.1016/j.atmosenv.2010.11.052
  5. Almeida, R.M., de Freitas, V.P. (2014) Indoor environmental quality of classrooms in Southern European climate. Energy and Buildings 81, 127-140. https://doi.org/10.1016/j.enbuild.2014.06.020
  6. Altug, H., Gaga, E.O., Dogeroglu, T., Ozden, O., Ornektekin, S., Brunekreef, B., Meliefste, K., Hoek, G., VanDoorn, W. (2013) Effects of air pollution on lung function and symptoms of asthma, rhinitis and eczema in primary school children. Environmental Science and Pollution Research 20(9), 6455-6467. https://doi.org/10.1007/s11356-013-1674-1
  7. Alves, C.A., Urban, R.C., Pegas, P.N., Nunes, T. (2014) Indoor/Outdoor relationships between $PM_{10}$ and associated organic compounds in a primary school. Aerosol and Air Quality Research 14, 86-98. https://doi.org/10.4209/aaqr.2013.04.0114
  8. Alves, C., Duarte, M., Ferreira, M., Alves, A., Almeida, A., Cunha, A. (2016) Air quality in a school with dampness and mould problems. Air Quality, Atmosphere & Health 9(2), 107-115. https://doi.org/10.1007/s11869-015-0319-6
  9. Amato, F., Rivas, I., Viana, M., Moreno, T., Bouso, L., Reche, C., Alvarez-Pedrerol, M., Alastuey, A., Sunyer, J., Querol, X. (2014) Sources of indoor and outdoor $PM_{2.5}$ concentrations in primary schools. Science of the Total Environment 490, 757-765. https://doi.org/10.1016/j.scitotenv.2014.05.051
  10. Annesi-Maesano, I., Hulin, M., Lavaud, F., Raherison, C., Kopferschmitt, C., de Blay, F., Charpin, D.A., Denis,C. (2012) Poor air quality in classrooms related to asthma and rhinitis in primary schoolchildren of the French 6 Cities Study. Thorax 67(8), 682-688. https://doi.org/10.1136/thoraxjnl-2011-200391
  11. AQSIQ (2002) Administration of Quality Supervision, Inspection and Quarantine of the People's Republic of China. Ministry of Environmental Protection and Ministry of Health.
  12. Arhami, M., Minguillon, M.C., Polidori, A., Schauer, J.J., Delfino, R.J., Sioutas, C. (2010) Organic compoundcharacterization and source apportionment of indoor and outdoor quasi-ultrafine particulate matter in retirement homes of the Los Angeles Basin. Indoor Air 20(1), 17-30. https://doi.org/10.1111/j.1600-0668.2009.00620.x
  13. ASHRAE (1992) Standard 55-1992. Thermal environmental conditions for human occupancy. American Societyof Heating, Refrigerating, and Air-Conditioning Engineers, Atlanta, GA.
  14. ASHRAE (1999) Standard 62-1999. Ventilation for Acceptable Indoor Air Quality. American Society for Heating,Refrigerating and Air Conditioning Engineers, Atlanta, GA.
  15. ASHRAE (2009) ASHRAE Fundamentals Handbook, Ventilation, Air Conditioning, and Refrigeration SystemsInc. American Society of Heating, Refrigerating and Air-Conditioning Engineers, Atlanta, GA.
  16. ASTM (2012) Standard D5791-95. Standard Guide for Using Probability Sampling Methods in Studies of IndoorAir Quality in Buildings. ASTM International.
  17. Bako-Biro, Z., Clements-Croome, D.J., Kochhar, N., Awbi, H.B., Williams, M.J. (2012) Ventilation rates in schools and pupils' performance. Building and Environment 48, 215-223. https://doi.org/10.1016/j.buildenv.2011.08.018
  18. Blondel, A., Plaisance, H. (2011) Screening of formaldehyde indoor sources and quantification of their emissionusing a passive sampler. Building and Environment 46(6), 1284-1291. https://doi.org/10.1016/j.buildenv.2010.12.011
  19. Branco, P.T.B.S., Alvim-Ferraz, M.C.M., Martins, F.G., Sousa, S.I.V. (2014) Indoor air quality in urban nurseriesat Porto city: Particulate matter assessment. Atmospheric Environment 84, 133-143. https://doi.org/10.1016/j.atmosenv.2013.11.035
  20. Buonanno, G., Fuoco, F.C., Morawska, L., Stabile, L. (2013) Airborne particle concentrations at schools measured at different spatial scales. Atmospheric Environment 67, 38-45. https://doi.org/10.1016/j.atmosenv.2012.10.048
  21. Canha, N., Almeida, M., Freitas, M.D.C., Almeida, S.M., Wolterbeek, H.T. (2011) Seasonal variation of total particulate matter and children respiratory diseases at Lisbon primary schools using passive methods. ProcediaEnvironmental Sciences 4, 170-183.
  22. Canha, N., Almeida, S.M., do Carmo Freitas, M., Trancoso, M., Sousa, A., Mouro, F., Wolterbeek, H.T. (2014)Particulate matter analysis in indoor environments of urban and rural primary schools using passive sampling methodology. Atmospheric Environment 83, 21-34. https://doi.org/10.1016/j.atmosenv.2013.10.061
  23. Casey, M.E., Braganza, E.B., Shaughnessey, R.J., Turk, B.H. (1995) Ventilation improvements in two elementary school classrooms. In Proceedings, Engineering Solutions to Indoor Air Quality Problems Symposium, Pittsburgh, PA.
  24. Chaloulakou, A., Mavroidis, I. (2002) Comparison of indoor and outdoor concentrations of CO at a publicschool. Evaluation of an indoor air quality model. Atmospheric Environment 36(11), 1769-1781. https://doi.org/10.1016/S1352-2310(02)00151-6
  25. Chan, A.T. (2002) Indoor-outdoor relationships of particulate matter and nitrogen oxides under different outdoormeteorological conditions. Atmospheric Environment 36(9), 1543-1551. https://doi.org/10.1016/S1352-2310(01)00471-X
  26. Chao, C.Y., Wong, K.K. (2002) Residential indoor $PM_{10}$ and $PM_{2.5}$ in Hong Kong and the elemental composition. Atmospheric Environment 36(2), 265-277. https://doi.org/10.1016/S1352-2310(01)00411-3
  27. Charles, K.E., Magee, R.J., Won, D., Lusztyk, E. (2005) Indoor air quality guidelines and standards. Institute for Research in Construction, National Research Council Canada.
  28. Cheng, Y.H., Li, Y.S. (2010) Influences of traffic emissions and meteorological conditions on ambient $PM_{10}$ and $PM_{2.5}$ levels at a highway toll station. Aerosol and Air Quality Research 10, 456-462. https://doi.org/10.4209/aaqr.2010.04.0025
  29. Chithra, V.S., Nagendra, S.M.S. (2012) Indoor air quality investigations in a naturally ventilated school building located close to an urban roadway in Chennai, India. Building and Environment 54, 159-167. https://doi.org/10.1016/j.buildenv.2012.01.016
  30. Chithra, V.S., Nagendra, S.M.S. (2013) Chemical and morphological characteristics of indoor and outdoor particulate matter in an urban environment. Atmospheric Environment 77, 579-587. https://doi.org/10.1016/j.atmosenv.2013.05.044
  31. Chithra, V.S., Nagendra, S.S. (2014) Impact of outdoor meteorology on indoor $PM_{10}$, $PM_{2.5}$ and $PM_{1}$ concentrations in a naturally ventilated classroom. Urban Climate 10, 77-91. https://doi.org/10.1016/j.uclim.2014.10.001
  32. CPCB (2014) http://cpcb.nic.in/Proto-Ind_AirPollution_June2014.pdf, accessed on 10th March 2016.
  33. Daisey, J.M., Angell, W.J., Apte, M.G. (2003) Indoor air quality, ventilation and health symptoms in schools: an analysis of existing information. Indoor Air 13(1), 53-64. https://doi.org/10.1034/j.1600-0668.2003.00153.x
  34. Demirel, G., Ozden, O., DOgeroGlu, T., Gaga, E.O. (2014) Personal exposure of primary school children to BTEX, $NO_2$ and ozone in Eskişehir, Turkey: Relationship with indoor/outdoor concentrations and risk assessment. Science of The Total Environment 473, 537-548.
  35. Deng, W., Chai, Y., Lin, H., So, W.W., Ho, K.W.K., Tsui, A.K.Y., Wong, R.K.S. (2016) Distribution of bacteria in inhalable particles and its implications for health risks in kindergarten children in Hong Kong. Atmospheric Environment 128, 268-275. https://doi.org/10.1016/j.atmosenv.2016.01.017
  36. Diapouli, E., Chaloulakou, A., Mihalopoulos, N., Spyrellis, N. (2008) Indoor and outdoor PM mass and numberconcentrations at schools in the Athens area. Environmental Monitoring and Assessment 136(1-3), 13-20. https://doi.org/10.1007/s10661-007-9724-0
  37. Dorizas, P.V., Assimakopoulos, M.N., Helmis, C., Santamouris, M. (2015) An integrated evaluation study of the ventilation rate, the exposure and the indoor air quality in naturally ventilated classrooms in the Mediterranean region during spring. Science of the Total Environment 502, 557-570. https://doi.org/10.1016/j.scitotenv.2014.09.060
  38. DOSH (Department of Occupational Safety and Health) (2010) Industry Code of Practice on Indoor Air Quality, Department of Occupational Safety and Health, Ministry of Human Resources, Malaysia.
  39. Elbayoumi, M., Ramli, N.A., Md Yusof, N.F.F., Al Madhoun, W. (2013) Spatial and seasonal variation of particulate matter ($PM_{10}$ and $PM_{2.5}$) in Middle Eastern classrooms. Atmospheric Environment 80, 389-397. https://doi.org/10.1016/j.atmosenv.2013.07.067
  40. Elbayoumi, M., Ramli, N.A., Yusof, N.F.F.M., Yahaya, A.S.B., Al Madhoun, W., Ul-Saufie, A.Z. (2014) Multivariate methods for indoor $PM_{10}$ and $PM_{2.5}$ modelling in naturally ventilated schools buildings. Atmospheric Environment 94, 11-21. https://doi.org/10.1016/j.atmosenv.2014.05.007
  41. Elbayoumi, M., Ramli, N.A., Yusof, N.F.F.M., Madhoun, W.A. (2015) Seasonal variation in schools' indoor air environments and health symptoms among students in an eastern Mediterranean climate. Human and Ecological Risk Assessment: An International Journal 21(1), 184-204. https://doi.org/10.1080/10807039.2014.894444
  42. El-Sharkawy, M.F.M. (2014) Study the indoor air quality level inside governmental elementary schools of Dammam City in Saudi Arabia. International Journal of Environmental Health Engineering 3(1), 22.
  43. Faustman, E.M., Silbernagel, S.M., Fenske, R.A., Burbacher, T.M., Ponce, R.A. (2000) Mechanisms underlying Children's susceptibility to environmental toxicants. Environmental Health Perspectives 108(Suppl 1), 13-21. https://doi.org/10.1289/ehp.00108s113
  44. Federal Republic of Germany (2000) Maximum Concentrations at the Workplace and Biological Tolerance Values for Working Materials, Commission for the Investigation of Health Hazards of Chemical Compounds in the Work Area, Germany.
  45. Fromme, H., Diemer, J., Dietrich, S., Cyrys, J., Heinrich, J., Lang, W., Kiranoglu, M., Twardella, D. (2008) Chemical and morphological properties of particulate matter ( $PM_{10} and PM_{2.5}$) in school classrooms and outdoor air. Atmospheric Environment 42(27), 6597-6605. https://doi.org/10.1016/j.atmosenv.2008.04.047
  46. Fromme, H., Twardella, D., Dietrich, S., Heitmann, D., Schierl, R., Liebl, B., Rüden, H. (2007) Particulate matterin the indoor air of classrooms-exploratory results from Munich and surrounding area. Atmospheric Environment 41(4), 854-866. https://doi.org/10.1016/j.atmosenv.2006.08.053
  47. Gadkari, N.M. (2010) Study of personal-indoor-ambient fine particulate matters among school communities in mixed urban-industrial environment in India. Environmental Monitoring and Assessment 165(1-4), 365-375. https://doi.org/10.1007/s10661-009-0952-3
  48. Gadkari, N., Pervez, S. (2008) Source apportionment of personal exposure of fine particulates among school communities in India. Environmental Monitoring and Assessment 142(1-3), 227-241. https://doi.org/10.1007/s10661-007-9927-4
  49. Gaidajis, G., Angelakoglou, K. (2009) Indoor air quality in university classrooms and relative environment in terms of mass concentrations of particulate matter. Journal of Environmental Science and Health Part A 44(12), 1227-1232. https://doi.org/10.1080/10934520903139936
  50. Geelen, L.M., Huijbregts, M.A., Ragas, A.M., Bretveld, R.W., Jans, H.W., Van Doorn, W.J., Evertz, S.J.C.J., Van Der Zijden, A. (2008) Comparing the effectiveness of interventions to improve ventilation behavior in primary schools. Indoor Air 18(5), 416-424. https://doi.org/10.1111/j.1600-0668.2008.00542.x
  51. Godwin, C., Batterman, S. (2007) Indoor air quality in Michigan schools. Indoor Air 17(2), 109-121. https://doi.org/10.1111/j.1600-0668.2006.00459.x
  52. Goyal, R., Khare, M. (2009) Indoor-outdoor concentrations of RSPM in classroom of a naturally ventilated school building near an urban traffic roadway. Atmospheric Environment 43(38), 6026-6038. https://doi.org/10.1016/j.atmosenv.2009.08.031
  53. Grimsrud, D., Bridges, B., Schulte, R. (2006) Continuous measurements of air quality parameters in schools.Building Research & Information 34(5), 447-458. https://doi.org/10.1080/09613210600808880
  54. Guo, H. (2011) Source apportionment of volatile organic compounds in Hong Kong homes. Building and Environment 46(11), 2280-2286. https://doi.org/10.1016/j.buildenv.2011.05.008
  55. Guo, H., Morawska, L., He, C., Zhang, Y.L., Ayoko, G., Cao, M. (2010) Characterization of particle number concentrations and $PM_{2.5}$ in a school: influence of outdoor air pollution on indoor air. Environmental Science and Pollution Research 17(6), 1268-1278. https://doi.org/10.1007/s11356-010-0306-2
  56. Gupta, A., Cheong, D.K.W. (2007) Physical characterization of particulate matter and ambient meteorological parameters at different indoor-outdoor locations in Singapore. Building and Environment 42(1), 237-245. https://doi.org/10.1016/j.buildenv.2006.02.017
  57. Habil, M., Massey, D.D., Taneja, A. (2013) Exposure of children studying in schools of India to PM levels and metal contamination: sources and their identification. Air Quality, Atmosphere & Health 6(3), 575-587. https://doi.org/10.1007/s11869-013-0201-3
  58. Habil, M., Taneja, A. (2011) Children's exposure to indoor particulate matter in naturally ventilated schools in India. Indoor and Built Environment 20(4), 430-448. https://doi.org/10.1177/1420326X11409455
  59. Haverinen-Shaughnessy, U., Shaughnessy, R.J., Cole, E.C., Toyinbo, O., Moschandreas, D.J. (2015) An assessment of indoor environmental quality in schools and its association with health and performance. Building and Environment 93, 35-40. https://doi.org/10.1016/j.buildenv.2015.03.006
  60. Health Canada (1989) Exposure Guidelines for Residential Indoor Air Quality A Report of the Federal-Provincial Advisory Committee on Environmental and Occupational Health. Health Canada (Federal-Provincial Advisory Committee).
  61. HKEPD (2003) Indoor Air Quality Information Centre. Indoor air quality certification schemes for offices and public places. China: Hong Kong Environmental Protection Department, Government of the Hong Kong Special Administrative Region.
  62. Institute of Environmental Epidemiology (1996) Guidelines for Good Indoor Air Quality in Office Premises, Ministry of the Environment, Singapore.
  63. IOM (2011) Climate Change, the Indoor Environmental and Health, Institute of Medicine, Washington, DC.
  64. Janssen, N.A., Hoek, G., Brunekreef, B., Harssema, H. (1999) Mass concentration and elemental composition of $PM_{10}$ in classrooms. Occupational and Environmental Medicine 56(7), 482-487. https://doi.org/10.1136/oem.56.7.482
  65. Janssen, N.A., Hoek, G., Harssema, H., Brunekreef, B. (1997) Childhood exposure to $PM_{10}$: relation between personal, classroom, and outdoor concentrations. Occupational and Environmental Medicine 54(12), 888-894. https://doi.org/10.1136/oem.54.12.888
  66. Janssen, N.A., van Vliet, P.H., Aarts, F., Harssema, H., Brunekreef, B. (2001) Assessment of exposure to traffic related air pollution of children attending schools near motorways. Atmospheric Environment 35(22), 3875-3884. https://doi.org/10.1016/S1352-2310(01)00144-3
  67. Jo, W.K., Seo, Y.J. (2005) Indoor and outdoor bioaerosol levels at recreation facilities, elementary schools, and homes. Chemosphere 61(11), 1570-1579. https://doi.org/10.1016/j.chemosphere.2005.04.103
  68. John, K., Karnae, S., Crist, K., Kim, M., Kulkarni, A. (2007) Analysis of trace elements and ions in ambient fine particulate matter at three elementary schools in Ohio. Journal of the Air & Waste Management Association 57(4), 394-406. https://doi.org/10.3155/1047-3289.57.4.394
  69. Jovanovic, M., Vucicevic, B., Turanjanin, V., Zivkovic, M., Spasojevic, V. (2014) Investigation of indoor and outdoor air quality of the classrooms at a school in Serbia. Energy 77, 42-48. https://doi.org/10.1016/j.energy.2014.03.080
  70. Kim, J.L., Elfman, L., Mi, Y., Johansson, M., Smedje, G., Norback, D. (2005) Current asthma and respiratory symptoms among pupils in relation to dietary factors and allergens in the school environment. Indoor Air 15(3), 170-182. https://doi.org/10.1111/j.1600-0668.2005.00334.x
  71. Kim, J.L., Elfman, L., Mi, Y., Wieslander, G., Smedje, G., Norback, D. (2007) Indoor molds, bacteria, microbial volatile organic compounds and plasticizers in schoolsassociations with asthma and respiratory symptoms in pupils. Indoor Air 17(2), 153-163. https://doi.org/10.1111/j.1600-0668.2006.00466.x
  72. Kingham, S., Briggs, D., Elliott, P., Fischer, P., Lebret, E. (2000) Spatial variations in the concentrations of traffic-related pollutants in indoor and outdoor air in Huddersfield, England. Atmospheric Environment 34(6),905-916. https://doi.org/10.1016/S1352-2310(99)00321-0
  73. Kinshella, M.R., Van Dyke, M.V., Douglas, K.E., Martyny, J.W. (2001) Perceptions of indoor air quality associated with ventilation system types in elementary schools. Applied Occupational and Environmental Hygiene 16(10), 952-960. https://doi.org/10.1080/104732201300367209
  74. Koponen, I.K., Asmi, A., Keronen, P., Puhto, K., Kulmala, M. (2001) Indoor air measurement campaign in Helsinki, Finland 1999-the effect of outdoor air pollution on indoor air. Atmospheric Environment 35(8), 1465-1477. https://doi.org/10.1016/S1352-2310(00)00338-1
  75. Krugly, E., Martuzevicius, D., Sidaraviciute, R., Ciuzas, D., Prasauskas, T., Kauneliene, V., Stasiulaitiene, I., Kliucininkas, L. (2014) Characterization of particulate and vapor phase polycyclic aromatic hydrocarbons in indoor and outdoor air of primary schools. Atmospheric Environment 82, 298-306. https://doi.org/10.1016/j.atmosenv.2013.10.042
  76. Krzyzanowski, M., Bundeshaus, G., Negru, M.L., Salvi, M.C. (2005) Particulate matter air pollution: how itharms health. World Health Organization Fact sheet EURO/04/05.
  77. Larson, T., Gould, T., Simpson, C., Liu, L.J.S., Claiborn, C., Lewtas, J. (2004) Source apportionment of indoor, outdoor, and personal $PM_{2.5}$ in Seattle, Washington, using positive matrix factorization. Journal of the Air & Waste Management Association 54(9), 1175-1187. https://doi.org/10.1080/10473289.2004.10470976
  78. Lawson, S.J., Galbally, I.E., Powell, J.C., Keywood, M.D., Molloy, S.B., Cheng, M., Selleck, P.W. (2011) The effect of proximity to major roads on indoor air quality in typical Australian dwellings. Atmospheric Environment 45(13), 2252-2259. https://doi.org/10.1016/j.atmosenv.2011.01.024
  79. Lee, S.C., Chang, M. (2000) Indoor and outdoor air quality investigation at schools in Hong Kong. Chemosphere 41(1), 109-113. https://doi.org/10.1016/S0045-6535(99)00396-3
  80. Lee, S.C., Guo, H., Li, W.M., Chan, L.Y. (2002) Inter-comparison of air pollutant concentrations in different indoor environments in Hong Kong. Atmospheric Environment 36(12), 1929-1940. https://doi.org/10.1016/S1352-2310(02)00176-0
  81. Lim, J.M., Jeong, J.H., Lee, J.H., Moon, J.H., Chung, Y.S., Kim, K.H. (2011) The analysis of $PM_{2.5}$ and associated elements and their indoor/outdoor pollution status in an urban area. Indoor Air 21(2), 145-155. https://doi.org/10.1111/j.1600-0668.2010.00691.x
  82. Macher, J. (1999) Bioaerosols: assessment and control. American Conference of Governmental Industrial Hygienists.
  83. Madureira, J., Paciência, I., de Oliveira Fernandes, E. (2012) Levels and indoor-outdoor relationships of sizespecific particulate matter in naturally ventilated Portuguese schools. Journal of Toxicology and Environmental Health, Part A: Current Issues 75(22-23), 1423-1436. https://doi.org/10.1080/15287394.2012.721177
  84. Madureira, J., Paciencia, I., Pereira, C., Teixeira, J.P., Fernandes, E.D.O. (2015) Indoor air quality in Portuguese schools: levels and sources of pollutants. Indoor Air, 1-12.
  85. Madureira, J., Paciência, I., Rufo, J., Severo, M., Ramos, E., Barros, H., de Oliveira Fernandes, E. (2016) Sourceapportionment of $CO_{2}$, $PM_{10}$ and VOCs levels and health risk assessment in naturally ventilated primary schools in Porto, Portugal. Building and Environment 96, 198-205. https://doi.org/10.1016/j.buildenv.2015.11.031
  86. Maroni, M., Seifert, B., Lindvall, T. (1995) Indoor Air Quality a Comprehensive Reference Book. Elsevier,Amsterdam.
  87. Massey, D., Kulshrestha, A., Masih, J., Taneja, A. (2012) Seasonal trends of PM 10, PM 5.0, PM 2.5 and PM1.0 in indoor and outdoor environments of residential homes located in North-Central India. Building and Environment 47(22), 223-231. https://doi.org/10.1016/j.buildenv.2011.07.018
  88. Mate, T., Guaita, R., Pichiule, M., Linares, C., Diaz, J. (2010) Short-term effect of fine particulate matter ($PM_{2.5}$) on daily mortality due to diseases of the circulatory system in Madrid (Spain). Science of the Total Environment 408(23), 5750-5757. https://doi.org/10.1016/j.scitotenv.2010.07.083
  89. Mazaheri, M., Reche, C., Rivas, I., Crilley, L.R., Alvarez-Pedrerol, M., Viana, M., Tobias, A., Alastuey, A., Sunyer, J., Querol, X., Morawska, L. (2016) Variability in exposure to ambient ultrafine particles in urban schools: Comparative assessment between Australia and Spain. Environment International 88, 142-149. https://doi.org/10.1016/j.envint.2015.12.029
  90. Medina, S., Plasencia, A., Ballester, F., Mucke, H.G., Schwartz, J. (2004) Apheis: public health impact of $PM_{10}$ in 19 European cities. Journal of Epidemiology and Community Health 58(10), 831-836. https://doi.org/10.1136/jech.2003.016386
  91. Meklin, T., Husman, T., Vepsalainen, A., Vahteristo, M., Koivisto, J., Halla-Aho, J., Hyvarinen, A., Moschandreas, D., Nevalainen, A. (2002) Indoor air microbes and respiratory symptoms of children in moisture damaged and reference schools. Indoor Air 12(3), 175-183. https://doi.org/10.1034/j.1600-0668.2002.00169.x
  92. Mendell, M.J., Heath, G.A. (2005) Do indoor pollutants and thermal conditions in schools influence student performance? A critical review of the literature. Indoor Air 15(1), 27-52. https://doi.org/10.1111/j.1600-0668.2004.00320.x
  93. MHLW (2009) Ministry of Health, Labor and Welfare. Japanese Law for Maintenance of Sanitation in Buildings.
  94. Mi, Y.H., Norback, D., Tao, J., Mi, Y.L., Ferm, M. (2006) Current asthma and respiratory symptoms among pupils in Shanghai, China: influence of building ventilation, nitrogen dioxide, ozone, and formaldehyde in classrooms. Indoor Air 16(6), 454-464. https://doi.org/10.1111/j.1600-0668.2006.00439.x
  95. Miller, F.J. (2000) Dosimetry of particles: critical factors having risk assessment implications. Inhalation Toxicology 12(S3), 389-395. https://doi.org/10.1080/08958378.2000.11463250
  96. Minguillon, M.C., Schembari, A., Triguero-Mas, M., de Nazelle, A., Dadvand, P., Figueras, F.J., Salvado, A., Grimalt, J.O., Nieuwenhuijsen, M., Querol, X. (2012) Source apportionment of indoor, outdoor and personal $PM_{2.5}$ exposure of pregnant women in Barcelona, Spain. Atmospheric Environment 59, 426-436. https://doi.org/10.1016/j.atmosenv.2012.04.052
  97. Moglia, D., Smith, A., MacIntosh, D.L., Somers, J.L. (2006) Prevalence and implementation of IAQ programs in US schools. Environmental Health Perspectives 114(1), 141.
  98. Mohanraj, R., Azeez, P.A. (2004) Health effects of airborne particulate matter and the Indian scenario. Current Science 87(6), 741-748.
  99. Montazami, A., Wilson, M., Nicol, F. (2012) Aircraft noise, overheating and poor air quality in classrooms in London primary schools. Building and Environment 52, 129-141. https://doi.org/10.1016/j.buildenv.2011.11.019
  100. Morawska, L., He, C., Johnson, G., Guo, H., Uhde, E., Ayoko, G. (2009) Ultrafine particles in indoor air of a school: possible role of secondary organic aerosols. Environmental Science & Technology 43(24), 9103-9109. https://doi.org/10.1021/es902471a
  101. Morris, R.D. (2001) Airborne particulates and hospital admissions for cardiovascular disease: a quantitative review of the evidence. Environmental Health Perspectives 109(Suppl 4), 495-500. https://doi.org/10.1289/ehp.01109s4495
  102. Mui, K.W., Wong, L.T., Hui, P.S. (2008) Risks of unsatisfactory airborne bacteria level in air-conditioned offices of subtropical climates. Building and Environment 43(4), 475-479. https://doi.org/10.1016/j.buildenv.2007.01.012
  103. Mullen, N.A., Bhangar, S., Hering, S.V., Kreisberg, N.M., Nazaroff, W.W. (2011) Ultrafine particle concentrations and exposures in six elementary school classrooms in northern California. Indoor Air 21(1), 77-87. https://doi.org/10.1111/j.1600-0668.2010.00690.x
  104. Neuberger, M., Schimek, M.G., Horak Jr, F., Moshammer, H., Kundi, M., Frischer, T., Gomiscek, B., Puxbaum, H., Hauck, H. (2004) Acute effects of particulate matter on respiratory diseases, symptoms and functions: epidemiological results of the Austrian Project on Health Effects of Particulate Matter (AUPHEP). Atmospheric Environment 38(24), 3971-3981. https://doi.org/10.1016/j.atmosenv.2003.12.044
  105. Nielsen, O. (1984) Quality of air and the amount of fresh air in classrooms. In: Berglund, B., Lindvall, T. and Sundell, J. (eds) Indoor Air: Buildings, Ventilation and Thermal Climate, Stockholm Swedish Council for Building Research, 5, 221-226.
  106. Oeder, S., Dietrich, S., Weichenmeier, I., Schober, W., Pusch, G., Jörres, R.A., Schierl, R., Nowak, D., Fromme, H., Behrendt, H., Buters, J.T.M. (2012) Toxicity and elemental composition of particulate matter from outdoor and indoor air of elementary schools in Munich, Germany. Indoor Air 22(2), 148-158. https://doi.org/10.1111/j.1600-0668.2011.00743.x
  107. Pant, P., Harrison, R.M. (2012) Critical review of receptor modelling for particulate matter: a case study of India.Atmospheric Environment 49, 1-12. https://doi.org/10.1016/j.atmosenv.2011.11.060
  108. Pearce, D., Crowards, T. (1996) Particulate matter and human health in the United Kingdom. Energy Policy 24(7), 609-619. https://doi.org/10.1016/0301-4215(96)00048-1
  109. Pegas, P.N., Nunes, T., Alves, C.A., Silva, J.R., Vieira, S.L.A., Caseiro, A., Pio, C.A. (2012) Indoor and outdoor characterisation of organic and inorganic compounds in city centre and suburban elementary schools of Aveiro, Portugal. Atmospheric Environment 55, 80-89. https://doi.org/10.1016/j.atmosenv.2012.03.059
  110. Pervez, S., Dubey, N., Watson, J.G., Chow, J., Pervez, Y. (2012) Impact of different household fuel use on source apportionment results of house-indoor RPM in Central India. Aerosol and Air Quality Resarch 12(1), 49-60. https://doi.org/10.4209/aaqr.2011.08.0124
  111. Polednik, B. (2013) Particulate matter and student exposure in school classrooms in Lublin, Poland. Environmental Research 120, 134-139. https://doi.org/10.1016/j.envres.2012.09.006
  112. Pope III, C.A., Burnett, R.T., Thun, M.J., Calle, E.E., Krewski, D., Ito, K., Thurston, G.D. (2002) Lung cancer, cardiopulmonary mortality, and long-term exposure to fine particulate air pollution. Journal of the American Medical Association 287(9), 1132-1141. https://doi.org/10.1001/jama.287.9.1132
  113. Pope, C.A., Burnett, R.T., Thurston, G.D., Thun, M.J., Calle, E.E., Krewski, D., Godleski, J.J. (2004) Cardiovascular mortality and long-term exposure to particulate air pollution epidemiological evidence of general pathophysiological pathways of disease. Circulation 109(1), 71-77. https://doi.org/10.1161/01.CIR.0000108927.80044.7F
  114. Poulhet, G., Dusanter, S., Crunaire, S., Locoge, N., Gaudion, V., Merlen, C., Kaluzny, P., Coddeville, P. (2014) Investigation of formaldehyde sources in French schools using a passive flux sampler. Building and Environment 71, 111-120. https://doi.org/10.1016/j.buildenv.2013.10.002
  115. Poupard, O., Blondeau, P., Iordache, V., Allard, F. (2005) Statistical analysis of parameters influencing the relationship between outdoor and indoor air quality in schools. Atmospheric Environment 39(11), 2071-2080. https://doi.org/10.1016/j.atmosenv.2004.12.016
  116. Putus, T., Tuomainen, A., Rautiala, S. (2004) Chemical and microbial exposures in a school building: adverse health effects in children. Archives of Environmental Health: An International Journal 59(4), 194-201. https://doi.org/10.3200/AEOH.59.4.194-201
  117. Qian, J., Hospodsky, D., Yamamoto, N., Nazaroff, W.W., Peccia, J. (2012) Size-resolved emission rates of airborne bacteria and fungi in an occupied classroom. Indoor Air 22(4), 339-351. https://doi.org/10.1111/j.1600-0668.2012.00769.x
  118. Raysoni, A.U., Stock, T.H., Sarnat, J.A., Montoya Sosa, T., Ebelt Sarnat, S., Holguin, F., Greenwald, R., Johnson, B., Li, W.W. (2013) Characterization of traffic-related air pollutant metrics at four schools in El Paso, Texas, USA: Implications for exposure assessment and siting schools in urban areas. Atmospheric Environment 80, 140-151. https://doi.org/10.1016/j.atmosenv.2013.07.056
  119. Riain, N., Mark, D., Davies, M., Harrison, R.M., Byrne, M.A. (2003) Averaging periods for indoor-outdoor ratios of pollution in naturally ventilated non-domestic buildings near a busy road. Atmospheric Environment 37(29), 4121-4132. https://doi.org/10.1016/S1352-2310(03)00509-0
  120. Rivas, I., Viana, M., Moreno, T., Bouso, L., Pandolfi, M., Alvarez-Pedrerol, M., Forns, J., Alastuey, A., Sunyer, J., Querol, X. (2015) Outdoor infiltration and indoor contribution of UFP and BC, OC, secondary inorganic ions and metals in $PM_{2.5}$ in schools. Atmospheric Environment 106, 129-138. https://doi.org/10.1016/j.atmosenv.2015.01.055
  121. Rufo, J.C., Madureira, J., Paciencia, I., Slezakova, K., do Carmo Pereira, M., Aguiar, L., Teixeira, J.P., Moreira, A., Fernandes, E.O. (2016) Children exposure to indoor ultrafine particles in urban and rural school environments. Environmental Science and Pollution Research, 1-9.
  122. Santamouris, M., Synnefa, A., Asssimakopoulos, M., Livada, I., Pavlou, K., Papaglastra, M., Gaitani, N., Kolokotsa, D., Assimakopoulos, V. (2008) Experimental investigation of the air flow and indoor carbon dioxide concentration in classrooms with intermittent natural ventilation. Energy and Buildings 40(10), 1833-1843. https://doi.org/10.1016/j.enbuild.2008.04.002
  123. Sawant, A.A., Na, K., Zhu, X., Cocker, K., Butt, S., Song, C., Cocker III, D.R. (2004) Characterization of $PM_{2.5}$ and selected gas-phase compounds at multiple indoor and outdoor sites in Mira Loma, California. Atmospheric Environment 38(37), 6269-6278. https://doi.org/10.1016/j.atmosenv.2004.08.043
  124. Schwartz, J., Dockery, D.W., Neas, L.M. (1996) Is daily mortality associated specifically with fine particles?. Journal of the Air & Waste Management Association 46(10), 927-939. https://doi.org/10.1080/10473289.1996.10467528
  125. Sexton, K., Hayward, S.B. (1987) Source apportionment of indoor air pollution. Atmospheric Environment (1967), 21(2), 407-418. https://doi.org/10.1016/0004-6981(87)90020-5
  126. Shendell, D.G., Prill, R., Fisk, W.J., Apte, M.G., Blake, D., Faulkner, D. (2004) Associations between classroom $CO_2$ concentrations and student attendance in Washington and Idaho. Indoor Air 14(5), 333-341. https://doi.org/10.1111/j.1600-0668.2004.00251.x
  127. Simoni, M., Annesi-Maesano, I., Sigsgaard, T., Norback, D., Wieslander, G., Nystad, W., Canciani, M., Sestini,P., Viegi, G. (2010) School air quality related to dry cough, rhinitis and nasal patency in children. European Respiratory Journal 35(4), 742-749. https://doi.org/10.1183/09031936.00016309
  128. Simons, E., Hwang, S.A., Fitzgerald, E.F., Kielb, C., Lin, S. (2010) The impact of school building conditions on student absenteeism in upstate New York. American Journal of Public Health 100(9), 1679. https://doi.org/10.2105/AJPH.2009.165324
  129. SINPHONIE (2013) http://www.sinphonie.eu/, accessed on 1st March 2014.
  130. Smedje, G., Norback, D. (2000) New ventilation systems at select schools in Sweden-effects on asthma and exposure. Archives of Environmental Health: An International Journal 55(1), 18-25. https://doi.org/10.1080/00039890009603380
  131. Spengler, J.D. (2012) Climate change, indoor environments, and health. Indoor Air 22, 89-95. https://doi.org/10.1111/j.1600-0668.2012.00768.x
  132. Stranger, M., Potgieter-Vermaak, S.S., Van Grieken, R. (2008) Characterization of indoor air quality in primary schools in Antwerp, Belgium. Indoor Air 18(6), 454-463. https://doi.org/10.1111/j.1600-0668.2008.00545.x
  133. Thatcher, T.L., Layton, D.W. (1995) Deposition, resuspension, and penetration of particles within a residence. Atmospheric Environment 29, 1487-1497. https://doi.org/10.1016/1352-2310(95)00016-R
  134. Theodosiou, T.G., Ordoumpozanis, K.T. (2008) Energy, comfort and indoor air quality in nursery and elementary school buildings in the cold climatic zone of Greece. Energy and Buildings 40(12), 2207-2214. https://doi.org/10.1016/j.enbuild.2008.06.011
  135. Tippayawong, N., Khuntong, P., Nitatwichit, C., Khunatorn, Y., Tantakitti, C. (2009) Indoor/outdoor relationships of size-resolved particle concentrations in naturally ventilated school environments. Building and Environment 44(1), 188-197. https://doi.org/10.1016/j.buildenv.2008.02.007
  136. Toyinbo, O., Shaughnessy, R., Turunen, M., Putus, T., Metsamuuronen, J., Kurnitski, J., Haverinen- Shaughnessy, U. (2016) Building characteristics, indoor environmental quality, and mathematics achievement in Finnish elementary schools. Building and Environment 104, 114-121. https://doi.org/10.1016/j.buildenv.2016.04.030
  137. Tran, D.T., Alleman, L.Y., Coddeville, P., Galloo, J.C. (2012) Elemental characterization and source identification of size resolved atmospheric particles in French classrooms. Atmospheric Environment 54, 250-259. https://doi.org/10.1016/j.atmosenv.2012.02.021
  138. Tran, D.T., Alleman, L.Y., Coddeville, P., Galloo, J.C. (2014) Indoor-outdoor behavior and sources of sizeresolved airborne particles in French classrooms. Building and Environment 81, 183-191. https://doi.org/10.1016/j.buildenv.2014.06.023
  139. Triantafyllou, A.G., Zoras, S., Evagelopoulos, V., Garas, S. (2008) $PM_{10}$, $O_{3}$, CO concentrations and elementalanalysis of airborne particles in a school building. Water, Air, & Soil Pollution: Focus 8(1), 77-87. https://doi.org/10.1007/s11267-007-9132-z
  140. Turk, B.H., Grimsrud, D.T., Brown, J.T., Geisling-Sobotka, K., Harrison, J., Prill, R.J. (1987) Commercial building ventilation rates and particle concentrations. In: Proceedings of Indoor Air '87: The 4th International Conference on Indoor Air Quality and Climate, West Berlin, West Germany, 1, 610-614.
  141. Turunen, M., Toyinbo, O., Putus, T., Nevalainen, A., Shaughnessy, R., Haverinen-Shaughnessy, U. (2014) Indoor environmental quality in school buildings, and the health and wellbeing of students. International Journal of Hygiene and Environmental Health 217(7), 733-739. https://doi.org/10.1016/j.ijheh.2014.03.002
  142. Twardella, D., Matzen, W., Lahrz, T., Burghardt, R., Spegel, H., Hendrowarsito, L., Frenzel, A.C., Fromme, H. (2012) Effect of classroom air quality on students' concentration: results of a cluster-randomized cross-over experimental study. Indoor Air 22(5), 378-387. https://doi.org/10.1111/j.1600-0668.2012.00774.x
  143. Uhde, E., Salthammer, T. (2007) Impact of reaction products from building materials and furnishings on indoor air quality-a review of recent advances in indoor chemistry. Atmospheric Environment 41(15), 3111-3128. https://doi.org/10.1016/j.atmosenv.2006.05.082
  144. UNESCO (2009) Global Education Digest 2009: Comparing education statistics across the world. UNESCO Institute for Statistics, Montreal, Quebec, Canada.
  145. U.S. EPA (1990) Compendium of Methods for the Determination of Air Pollutants in Indoor Air. US EPA Office of Research and Development, Research Triangle Park, NC.
  146. U.S. EPA (2003) A Standardized EPA Protocol for Characterizing Indoor Air Quality in Large Office Buildings, Office of Research and Development and Office of Air and Radiation, U.S. Environmental Protection Agency, Washington, DC.
  147. U.S. EPA (2011) IAQ and climate readiness. U.S. Environmental Protection Agency, Washington, DC.
  148. U.S. EPA (2012) http://www.epa.gov/iaq/schools/pdfs/publications/communicationsguide.pdf, accessed on 1st July 2012.
  149. U.S. EPA (2013) http://www.epa.gov/iaq/schools/pdfs/kit/backgrounder.pdf, accessed on 1st October 2013.
  150. U.S. EPA (2014) http://www.epa.gov/iaq/voc.html, accessed on 1st March 2014.
  151. U.S. EPA and NIOSH (1991) Building air quality: A guide for building owners and facility managers. U.S. Environmental Protection Agency and National Institute of Occupational Safety and Health, Washington, DC.
  152. van der Zee, S.C., Strak, M., Dijkema, M.B.A., Brunekreef, B., Janssen, N.A.H. (2016) The impact of particle filtration on indoor air quality in a classroom near a highway. Indoor Air doi:10.1111/ina.12308.
  153. Viana, M., Kuhlbusch, T.A.J., Querol, X., Alastuey, A., Harrison, R.M., Hopke, P.K., Winiwarter, W., Vallius, M., Szidat, S., Prevot, A.S.H., Hueglin, C., Bloemen, H., Wahlin, P., Vecchi, R., Miranda, A.I., Kasper-Giebl, A., Maenhaut, W., Hitzenberger, R. (2008) Source apportionment of particulate matter in Europe: a review of methods and results. Journal of Aerosol Science 39(10), 827-849. https://doi.org/10.1016/j.jaerosci.2008.05.007
  154. Viana, M., Rivas, I., Querol, X., Alastuey, A., Alvarez-Pedrerol, M., Bouso, L., Sioutas, C., Sunyer, J. (2015)Partitioning of trace elements and metals between quasiultrafine, accumulation and coarse aerosols in indoor and outdoor air in schools. Atmospheric Environment 106, 392-401. https://doi.org/10.1016/j.atmosenv.2014.07.027
  155. Wallenborn, J.G., Schladweiler, M.J., Richards, J.H., Kodavanti, U.P. (2009) Differential pulmonary and cardiaceffects of pulmonary exposure to a panel of particulate matter-associated metals. Toxicology and Applied Pharmacology 241(1), 71-80. https://doi.org/10.1016/j.taap.2009.08.003
  156. Ward, T.J., Noonan, C.W., Hooper, K. (2007) Results of an indoor size fractionated PM school sampling program in Libby, Montana. Environmental Monitoring and Assessment 130(1-3), 163-171. https://doi.org/10.1007/s10661-006-9386-3
  157. White-Newsome, J.L., Sánchez, B.N., Jolliet, O., Zhang, Z., Parker, E.A., Timothy Dvonch, J., O'Neill, M.S. (2012) Climate change and health: indoor heat exposure in vulnerable populations. Environmental Research 112, 20-27. https://doi.org/10.1016/j.envres.2011.10.008
  158. WHO (2003) Health Aspects of Air Pollution with Particulate Matter, Ozone and Nitrogen Dioxide, Report on a WHO Working Group Bonn, Germany.
  159. WHO (2006a) Principles for evaluating health risks in children associated with exposure to chemicals. World Health Organization, Geneva, Switzerland.
  160. WHO (2006b) WHO Air quality guidelines for particulate matter, ozone, nitrogen dioxide and sulfur dioxide: global update 2005: summary of risk assessment. World Health Organization, Geneva, Switzerland.
  161. Worksafe Australia (2013) Workplace Exposure Standards for Airborne Contaminants, Worksafe Australia.
  162. Yang, W., Sohn, J., Kim, J., Son, B., Park, J. (2009) Indoor air quality investigation according to age of the school buildings in Korea. Journal of Environmental Management 90(1), 348-354. https://doi.org/10.1016/j.jenvman.2007.10.003
  163. Zhang, Q., Zhu, Y. (2012) Characterizing ultrafine particles and other air pollutants at five schools in South Texas. Indoor Air 22(1), 33-42. https://doi.org/10.1111/j.1600-0668.2011.00738.x
  164. Zhao, Z., Sebastian, A., Larsson, L., Wang, Z., Zhang, Z., Norback, D. (2008) Asthmatic symptoms among pupils in relation to microbial dust exposure in schools in Taiyuan, China. Pediatric Allergy and Immunology 19(5), 455-465. https://doi.org/10.1111/j.1399-3038.2007.00664.x
  165. Zwozdziak, A., Sowka, I., Krupinska, B., Zwozdziak, J., Nych, A. (2013) Infiltration or indoor sources as determinants of the elemental composition of particulate matter inside a school in Wroclaw, Poland?. Building and Environment 66, 173-180. https://doi.org/10.1016/j.buildenv.2013.04.023

피인용 문헌

  1. CO2 Concentration and Occupants’ Symptoms in Naturally Ventilated Schools in Mediterranean Climate vol.9, pp.9, 2018, https://doi.org/10.3390/buildings9090197
  2. Chemical and Biological Compositions Associated with Ambient Respirable Particulate Matter: a Review vol.231, pp.3, 2018, https://doi.org/10.1007/s11270-020-04490-5
  3. Indoor Comfort and Symptomatology in Non-University Educational Buildings: Occupants’ Perception vol.11, pp.4, 2018, https://doi.org/10.3390/atmos11040357
  4. An efficient strategy for the enhancement of adsorptivity of microporous carbons against gaseous formaldehyde: Surface modification with aminosilane adducts vol.743, pp.None, 2020, https://doi.org/10.1016/j.scitotenv.2020.140761
  5. Evaluation of the Relationship Between Outdoor Environment and Indoor Air Quality in Arid Condition vol.15, pp.1, 2018, https://doi.org/10.3923/rjes.2021.1.8
  6. Seasonal Variations in the Chemical Composition of Indoor and Outdoor PM10 in University Classrooms vol.13, pp.4, 2021, https://doi.org/10.3390/su13042263
  7. Effects of Climatic Conditions, Season and Environmental Factors on CO2 Concentrations in Naturally Ventilated Primary Schools in Chile vol.13, pp.8, 2018, https://doi.org/10.3390/su13084139
  8. Evaluating size-fractioned indoor particulate matter in an urban hospital in Iran vol.193, pp.8, 2018, https://doi.org/10.1007/s10661-021-09327-0
  9. Occupational and environmental impacts of indoor air pollutant for different occupancy: a review vol.13, pp.4, 2021, https://doi.org/10.1007/s13530-021-00102-9