DOI QR코드

DOI QR Code

UHPFRC 보 휨 거동에 대한 설계변수 변동의 영향

The Effect of Variation of Design Parameters on the Flexural Behavior of UHPFRC Beams

  • 투고 : 2018.06.07
  • 심사 : 2018.06.14
  • 발행 : 2018.06.30

초록

이 연구에서는 UHPFRC의 주요 재료특성관련 설계변수로써 UHPFRC의 인장강도의 변동, 탄성계수의 변동 및 인장철근비의 변동이 UHPFRC의 휨강도에 미치는 영향을 해석적으로 파악하고자 하였다. UHPFRC의 인장강도 변동량이 ${\pm}20%$일 때 휨강도 예측 결과는 ${\pm}8{\sim}9%$ 수준의 휨강도 변동을 나타낸다. 수치 해석 결과는 UHPFRC의 인장강도의 변동이 휨강도 예측 수준에 큰 영향을 미치는 것을 나타낸다. 탄성계수 변동에 따른 휨모멘트-곡률 곡선 예측 결과는 곡선의 기울기, 즉 휨강성의 차이를 나타내고, 휨강도는 뚜렷한 차이를 나타내지 않는다. 한편, 철근항복강도가 400MPa인 경우, 철근비가 0.5%일 때에 비해 철근비가 1.0, 1.5 및 2.0%일 때 SC120f의 휨강도는 각각 30, 67 및 99%만큼 증가한다. 또한, 철근비가 0.5%일 때에 비해 철근비가 1.0, 1.5 및 2.0%일 때 SC150f의 휨강도는 각각 29, 57 및 86%만큼 증가하고, SC180f의 휨강도는 각각 25, 50 및 70%만큼 증가하였다. 따라서 철근비 변동에 따라 UHPFRC의 휨강도는 큰 영향을 받음을 나타내고, 콘크리트 설계기준 압축강도가 클수록 철근비 증가에 따른 휨강도 증가율은 더 작음을 나타낸다.

This paper studies the bending behavior of ultra-high-performance fiber-reinforced concrete (UHPFRC) beams focused on the effect of variation in major material design parameters such as tensile strength, elastic modulus of UHPFRC, and rebar ratio. Analytical results show that the variation in the range of ${\pm}20%$ in the tensile strength of UHPFRC causes the significant difference in ${\pm}8{\sim}9%$ of bending strength compared to the reference condition. The variation of elastic modulus in UHPFRC rarely causes the effect on the bending strength of the UHPFRC section, whereas causes the difference in the slopes of moment-curvature curves, indicating different bending stiffness of UHPFRC sections. For the rebar with yield strength of 400MPa, the bending strength of SC120f is increased by 30, 67, and 99% when the rebar ratio is 1.0, 1.5, and 20%, respectively, compared to the rebar ratio of 0.5%. Therefore, it is observed that the variation of rebar ratio significantly affects the difference in bending strength of UHPFRC beams. However, as the compressive strength of UHPFRC becomes greater, the effect of rebar ratio on the increase of bending strength is decreased.

키워드

참고문헌

  1. ACI Committee 318. (2008). Building Code Requirements for Structural Concrete(ACI 318-08) and Commentary, American Concrete Institute.
  2. AFGC/SETRA. (2002). Ultra High Performance Fibre Reinforced Concretes, Interim Recommendations, Bagneux, France.
  3. Chan, Y.W., Chu, S.H. (2004). Effect of silica fume on steel fiber bond characteristics in reactive powder concrete, Cement and Concrete Research, 34(7), 1167-1172. https://doi.org/10.1016/j.cemconres.2003.12.023
  4. Graybeal, B.A. (2006). Material Property Characterization of Ultra High Performance Concrete, FHWA-HRT-06-103, 1-176.
  5. Hillerborg, A., Modeer, M., Petersson, P.E. (1976). Analysis of crack formation and crack growth in concrete by means of fracture mechanics and finite elements, Cement and Concrete Research, 6(6), 773-782. https://doi.org/10.1016/0008-8846(76)90007-7
  6. Junichiro, N. (2006). Recommendations for Design and Construction of Ultra High Strength Fiber Reinforced Concrete Structures(Draft), Japan Society of Civil Engineers.
  7. KCI. (2012). Specifications for Structural Concrete, Korea Concrete Institute.
  8. Kitsutaka, Y. (1997). Fracture parameters by polylinear tension-softening analysis, Journal of Engineering Mechanics, 123(5), 444-450. https://doi.org/10.1061/(ASCE)0733-9399(1997)123:5(444)
  9. Song, P.S., Hwang, S. (2004). Mechanical properties of high-strength steel fiber-reinforced concrete, Construction and Building Materials, 18(9), 669-673. https://doi.org/10.1016/j.conbuildmat.2004.04.027
  10. Yang, I.H., Joh, C.B., Kim, B.S. (2010a). Structural behavior of ultra high performance concrete beams subjected to bending, Engineering Structures, 32(11), 3478-3487. https://doi.org/10.1016/j.engstruct.2010.07.017
  11. Yang, I.H., Joh, C.B., Kim, B.S. (2010b). An experimental study on flexural behavior of steel fiber reinforced ultra high performance concrete prestressed girders, Journal of the Korea Concrete Institute, 22(6), 777-786 [in Korean]. https://doi.org/10.4334/JKCI.2010.22.6.777
  12. Yang, I.H., Joh, C.B., Kim, B.S. (2011a). Moment-curvature analysis of steel fiber-reinforced ultra high performance concrete beams with tension softening behavior, Journal of the Computational Structural Engineering Institute of Korea, 24(3), 237-248 [in Korean].
  13. Yang, I.H., Joh, C.B., Kim, B.S. (2011b). Flexural strength of large scale ultra high performance concrete prestressed T-beams, Canadian Journal of Civil Engineering, 38(11), 1185-1195. https://doi.org/10.1139/l11-078
  14. Yang, I.H., Kim, K.C., Joh, C.B. (2015). Flexural strength of hybrid steel fiber-reinforced ultra-high strength concrete beams, Journal of the Korea Concrete Institute, 27(3), 280-287 [in Korean].
  15. Yuguang, Y., Walraven, J., Uiji, J.D. (2008). "Study on bending behavior of an UHPC overlay on a steel orthotropic deck," Proceedings of 2nd International Symposium on Ultra High Performance Concrete, 639-646.